Skip to main content

Q-Matrix Learning via Latent Variable Selection and Identifiability

  • Chapter
  • First Online:
Handbook of Diagnostic Classification Models

Part of the book series: Methodology of Educational Measurement and Assessment ((MEMA))

Abstract

Much of the research and application in cognitive diagnostic assessments to date has been centered on a confirmatory approach where a Q-matrix is pre-identified using content experts’ opinion or test developers’ knowledge on test items. As opposed to the traditional methods, which require prior knowledge about latent dimensions and underlying structure of test items, the approaches described in this chapter attempt to identify a Q-matrix solely relying on the observed test response data and thus avoid probable decision error. There are several important aspects to consider when estimating a Q-matrix from the observed data. First, a fundamental question of identifiability arises, that is, whether and to what extent Q can be estimated from data. The second aspect to consider in learning Q concerns the computational intensity that arises from estimation. The third aspect pertains to the presence of missing data, more precisely, the latent attributes underlying the observed data. The completeness of a Q-matrix, the other important aspect to consider in identifying Q, is beyond the scope of the present chapter.

Jingchen Liu is supported in part by NSF SES-1323977, SES-1826540, IIS-1633360, and Army Research Office grant W911NF-15-1-0159.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chen, Y., Culpepper, S. A., Chen, Y., & Douglas, J. (2017). Bayesian estimation of the DINA Q matrix. Psychometrika. https://doi.org/10.1007/s11336-017-9579-4

  • Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110, 850–866.

    Article  Google Scholar 

  • Chiu, C.-Y. (2013). Statistical refinement of the Q-matrix in cognitive diagnosis. Applied Psychological Measurement, 37, 598–618.

    Article  Google Scholar 

  • Chiu, C.-Y., Douglas, J., & Li, X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74, 633–665.

    Article  Google Scholar 

  • DeCarlo, L. T. (2012). Recognizing uncertainty in the Q-matrix via a Bayesian extension of the DINA model. Applied Psychological Measurement, 36, 447–468.

    Article  Google Scholar 

  • de la Torre, J. (2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45, 343–362.

    Article  Google Scholar 

  • de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179–199.

    Article  Google Scholar 

  • de la Torre, J., & Chiu, C.-Y. (2016). A general method of empirical Q-matrix validation. Psychometrika, 81, 253–273.

    Article  Google Scholar 

  • Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), 1348–1360. Retrieved from http://www.jstor.org/stable/3085904

    Article  Google Scholar 

  • Fang, G., Liu, J., & Ying, Z. (2017a). Latent variable selection via overlap group LASSO with applications to cognitive assessment. Preprint.

    Google Scholar 

  • Fang, G., Liu, J., & Ying, Z. (2017b). On the identifiability of diagnostic classification models. ArXiv e-prints. Retrieved from https://arxiv.org/abs/1706.01240

    Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33, 1–22.

    Article  Google Scholar 

  • Haertel, E. H. (1989). Using restricted latent class models to map the attribute structure of achievement items. Journal of Educational Measurement, 26, 333–352.

    Article  Google Scholar 

  • Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191–210.

    Article  Google Scholar 

  • Junker, B., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258–272.

    Article  Google Scholar 

  • Köhn, H.-F., & Chiu, C.-Y. (2016). A proof of the duality of the dina model and the dino model. Journal of Classification, 33, 171–184.

    Article  Google Scholar 

  • Köhn, H. F., & Chiu, C.-Y. (2017). A procedure for assessing the completeness of the q-matrices of cognitively diagnostic tests. Psychometrika, 82, 112–132.

    Article  Google Scholar 

  • Liu, J. (2017). On the consistency of Q-matrix estimation: A commentary. Psychometrika, 82, 523-527.

    Article  Google Scholar 

  • Liu, J., Xu, G., & Ying, Z. (2012). Data-driven learning of Q-matrix. Applied Psychological Measurement, 36, 548–564.

    Article  Google Scholar 

  • Liu, J., Xu, G., & Ying, Z. (2013). Theory of self-learning Q-matrix. Bernoulli, 19, 1790–1817.

    Article  Google Scholar 

  • Rupp, A. A., & Templin, J. L. (2008). The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model. Educational and Psychological Measurement, 68, 78–96.

    Article  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 19, 461–464.

    Article  Google Scholar 

  • Sun, J., Chen, Y., Liu, J., Ying, Z., & Xin, T. (2016). Latent variable selection for multidimensional item response theory models via L 1 regularization. Psychometrika, 81(4), 921-939. https://doi.org/10.1007/s11336-016-9529-6

    Article  Google Scholar 

  • Templin, J. L., & Henson, R. A. (2006). A Bayesian method for incorporating uncertainty into Q-matrix estimation in skills assessment. In Symposium Conducted at the Meeting of the American Educational Research Association, San Diego, CA.

    Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58, 267–288.

    Google Scholar 

  • Tseng, P. (1988). Coordinate ascent for maximizing nondifferentiable concave functions (Technical Report LIDS-P, 1840). Massachusetts Institute of Technology, Laboratory for Information and Decision Systems.

    Google Scholar 

  • Tseng, P. (2001). Convergence of block coordinate descent method for nondifferentiable maximization. Journal of Optimization Theory and Applications, 109, 474–494.

    Article  Google Scholar 

  • von Davier, M. (2005, September). A general diagnostic model applied to language testing data (Research report No. RR-05-16). Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61, 287–301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingchen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Kang, HA. (2019). Q-Matrix Learning via Latent Variable Selection and Identifiability. In: von Davier, M., Lee, YS. (eds) Handbook of Diagnostic Classification Models. Methodology of Educational Measurement and Assessment. Springer, Cham. https://doi.org/10.1007/978-3-030-05584-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05584-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05583-7

  • Online ISBN: 978-3-030-05584-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics