Skip to main content

Basic Chemistry and Biomedical Significance of Nanomaterials

  • Chapter
  • First Online:
Nanomaterials and Plant Potential

Abstract

In view of the importance of nanosized systems in various aspects of human life, nanostructures and nanoproducts are strongly attracting the attention of researchers, planners, and investors all over the world. Specific properties of nanomaterials depend primarily on their size, structure, and shape, which are affected by several factors such as agglomeration, pH, temperature, solubility, phase transition, and surface plasmon resonance. This chapter highlights some basic chemical/biochemical characteristics of nanomaterials, which are responsible for their unique properties, and also points to the significance of these materials in areas of health and medicine with especial reference to the mode and mechanism of nanoencapsulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, Hanifehpour Y, Nejati-Koshki K, Pashaei-Asl R (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9:247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adachi E (2000) Three-dimensional self-assembly of gold nanocolloids in spheroids due to dialysis in the presence of sodium mercaptoacetate. Langmuir 16:6460–6469

    Article  CAS  Google Scholar 

  • Aina V, Perardi A, Bergandi L, Malavasi G, Menabue L, Morterra C, Ghigo D (2007) Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts. Chem Biol Interact 167:207–218

    Article  CAS  PubMed  Google Scholar 

  • Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432

    Article  CAS  Google Scholar 

  • Arivazhagan V (2013) Investigation of quantum confinement effect in pbse/znse multiple quantum well structures prepared by thermal evaporation technique. PhD thesis, Department of Physics, Karunya University, Coimbatore, India

    Google Scholar 

  • Ashraf MA, Peng W, Zare Y, Rhee KY (2018) Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res Lett 13:214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baeza A, Ruiz-Molina D, Vallet-Regi M (2017) Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks. Expert Opin Drug Deliv 14:783–796

    Article  CAS  PubMed  Google Scholar 

  • Bagul US, Pisal VV, Solanki NV, Karnavat A (2018) Current status of solid lipid nanoparticles: a review. Mod Appl Bioequiv Bioavail 3(MS.ID.555617):001–009

    Google Scholar 

  • Barua S, Mitragotri S (2014) Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9:223–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batra P, Mushtaq A, Mazumder J, Rizvi MS, Miglani R (2016) Nanoparticles and their applications in orthodontics. Adv Dent Oral Health 2:555584–555597

    Article  Google Scholar 

  • Bennet D, Kim S (2014) Polymer nanoparticles for smart drug delivery. In: Sezer AD (ed) Application of nanotechnology in drug delivery, Chapter 8, InTech, London, pp 257–310. https://doi.org/10.5772/58422.

    Google Scholar 

  • Bhaumik A (2017) Porous nanomaterials for energy, environment and biomedical applications. J Mater Sci Nanomater 1:e109

    Google Scholar 

  • Bonner JC (2016) Nanotechnology in pulmonary disease. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer Science + Business Media, Dordrecht, pp 2880–2885

    Chapter  Google Scholar 

  • Brune H, Giovannini M, Bromann K, Kern K (1998) Self-organized growth of nanostructure arrays on strain-relief patterns. Nature 394:451–453

    Article  CAS  Google Scholar 

  • Campani V, Giarra S, De Rosa G (2018) Lipid-based core-shell nanoparticles: evolution and potentialities in drug delivery. Open Nano 3:5–17

    Google Scholar 

  • Cao G, Wang Y (2011) Nanostructures and nanomaterials: synthesis, properties and applications. Imperial College Press, London

    Book  Google Scholar 

  • Chang J, Waclawik ER (2014) Colloidal semiconductor nanocrystals: controlled synthesis and surface chemistry in organic media. RSC Adv 4:23505–23511

    Article  CAS  Google Scholar 

  • Dasan KP (2015) Nanoclay/polymer composites: recent developments and future prospects. In: Thakur V, Thakur M (eds) Eco-friendly polymer nanocomposites. Advanced structured materials, vol 75. Springer, New Delhi

    Google Scholar 

  • Date AA, Hanes J, Ensign LM (2016) Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J Control Release 240:504–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datt A, Ndiege N, Larsen SC (2012) Development of porous nanomaterials for applications in drug delivery and imaging. In: Nanomaterials for biomedicine, ACS Symposium Series, vol 1119. American Chemical Society, Washington, D.C, pp 239–258

    Chapter  Google Scholar 

  • Du J, Chen Y, Zhang Y, Han CC, Fischer F, Schmidt M (2003) Organic/inorganic hybrid vesicles based on a reactive block copolymer. J Am Chem Soc 125:14710–14711

    Article  CAS  PubMed  Google Scholar 

  • Ehrman SH, Friedlander SK, Zachariah MR (1999) Phase segregation in binary SiO2/TiO2 and SiO2/Fe2O3 nanoparticle aerosols formed in a premixed flame. J Mater Res 14:4551–4561

    Article  CAS  Google Scholar 

  • Elimelech M, Jia X, Gregory J, Williams R (1998) Particle deposition and aggregation: measurement, modelling and simulation, Colloid and Surface Engineering Series. Butterworth-Heinemann, Oxford, p 124

    Google Scholar 

  • El-Say KM, El-Sawy HS (2017) Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm 528:675–691

    Article  CAS  PubMed  Google Scholar 

  • Endo Y, Sato K, Anzai J-I (2010) Preparation of avidin-containing polyelectrolyte microcapsules and their uptake and release properties. Polym Bull 66:711–720

    Article  CAS  Google Scholar 

  • Esmaeili A, Rahnamoun S, Sharifnia F (2013) Effect of O/W process parameters on Crataegus azarolus L. nanocapsule properties. J Nanobiotechnol 11:16–21

    Article  CAS  Google Scholar 

  • Esmailpour AA, Zarghami R, Mostoufi N (2015) Effect of temperature on the nanoparticles agglomerates fluidization. In: Proc. Int. Conf. modelling, simulation and applied mathematics (MSAM 2015). Atlantis Press, Tehran, pp 242–245

    Google Scholar 

  • Esmailpour AA, Mostoufi N, Zarghami R (2018) Effect of temperature on fluidization of hydrophilic and hydrophobic nanoparticle agglomerates. Exp Thermal Fluid Sci 96:63–74

    Article  CAS  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2012) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6:628–647

    Article  CAS  Google Scholar 

  • Fendler JH (2001) Colloid chemical approach to nanotechnology. Korean J Chem Eng 18:1–13

    Article  CAS  Google Scholar 

  • Fiandaca MS, Bankiewicz KS (2013) Micelles and liposomes: lipid nanovehicles for intracerebral drug delivery. In: Kateb B, Heiss JD (eds) The textbook of nanoneuroscience and nanoneurosurgery. CRC Press, Taylor & Francis Group, Boca Raton, pp 51–64

    Chapter  Google Scholar 

  • Ganesan P, Ramalingam P, Karthivashan G, Ko YT, Choi D-K (2018) Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomedicine 13:1569–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavasane AJ, Pawar HA (2014) Synthetic biodegradable polymers used in controlled drug delivery system: an overview. Clin Pharmacol Biopharm 3:121

    Article  Google Scholar 

  • Gupta A, Eral HB, Hatton TA, Doyle PS (2016) Nanoemulsions: formation, properties and applications. Soft Matter 12:2826–2841

    Article  CAS  PubMed  Google Scholar 

  • Halamoda-Kenzaoui B, Ceridono M, Urbán P, Bogni A, Ponti J, Gioria S, Kinsner-Ovaskainen A (2017) The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation. J Nanobiotechnol 15:48

    Article  CAS  Google Scholar 

  • Hillyer JF, Albrecht RM (2001) Gastrointestinal presorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharmacol Sci 90:1927–1936

    Article  CAS  Google Scholar 

  • Hoar TP, Schulman JH (1943) Transparent water in oil dispersions: the oleopathic hydromicelle. Nature 152:102–107

    Article  CAS  Google Scholar 

  • Husen A (2017) Gold nanoparticles from plant system: synthesis, characterization and application. In: Ghorbanpourn M, Manika K, Varma A (eds) Nanoscience and plant–soil systems, vol 48. Springer International Publication, Cham, pp 455–479

    Chapter  Google Scholar 

  • Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nano Res Lett 9:229

    Article  CAS  Google Scholar 

  • Hussain S, Al-Nsour F, Rice AB, Marshburn J, Yinling B, Ji Z, Zink JI, Walker NJ, Garantziotis S (2012) Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. ACS Nano 6:5820–5829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer R, Hsia CCW, Nguyen KT (2015) Nano-therapeutics for the lung: state-of-the-art and future perspectives. Curr Pharm Des 21:5233–5244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jafari SM (2017) An overview of nanoencapsulation techniques and their classification. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press, London, pp 1–34

    Google Scholar 

  • Jain D, Daima HK, Kachhwala S, Kothari SL (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Digest J Nanomater Biostruct 4:557–563

    Google Scholar 

  • Jiang J, Chen D-R, Biswas P (2007) Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology. Nanotechnology 18:285603–285611

    Article  CAS  Google Scholar 

  • Johnson LE, Johal MS (2018) Understanding nanomaterials, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Jolivet JP, Froidefond C, Pottier A, Chanéac C, Cassaignon S, Tronc E, Euzen P (2004) Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quant model. J Mater Chem 14:3281–3288

    Article  CAS  Google Scholar 

  • Joshi MD, Unger WJ, Storm G, van Kooyk Y, Mastrobattista E (2012) Targeting tumor antigens to dendritic cells using particulate carriers. J Control Release 161:25–37

    Article  CAS  PubMed  Google Scholar 

  • Juškait V, Ramanauskien K, Briedis V (2015) Design and formulation of optimized microemulsions for dermal delivery of resveratrol. Evid Based Complement Alternat Med 540916:10

    Google Scholar 

  • Kang G, Son H, Lim JM, Kweon H-S, Lee IS, Kang D, Jung JH (2012) Functionalized Fe3O4 nanoparticles for detecting zinc ions in living cells and their cytotoxicity. Chem Eur J 18:5843–5847

    Article  CAS  PubMed  Google Scholar 

  • Khurshid Z, Zafar M, Qasim S, Shahab S, Naseem M, AbuReqaiba A (2015) Advances in nanotechnology for restorative dentistry. Mater 8:717–731

    Article  CAS  Google Scholar 

  • Kretzmann JA, Evans CW, Norret M, Iyer KS (2017) Supramolecular assemblies of dendrimers and dendritic polymers in nanomedicine. In: Atwood J (ed) Comprehensive supramolecular chemistry II. Academic Press (Elsevier Inc.), USA, pp 237–256

    Chapter  Google Scholar 

  • Kumari A, Singla R, Guliani A, Yadav SK (2014) Nanoencapsulation for drug delivery. EXCLI J 13:265–286

    PubMed  PubMed Central  Google Scholar 

  • Kuntworbe N, Martini N, Shaw J, Al-Kassas R (2012) Malaria intervention policies and pharmaceutical nanotechnology as a potential tool for malaria management. Drug Dev Res 73:167–184

    Article  CAS  Google Scholar 

  • LaFemina JP (1995a) Tank waste treatment. Science Task Quarterly Report for January–March 1995. PNL10763

    Google Scholar 

  • LaFemina JP (1995b) Tank waste treatment. Science Task Quarterly Report for April–June 1995. PNL1076x

    Google Scholar 

  • Lao S-B, Zhang Z-X, Xu H-H, Jiang G-B (2010) Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone. Carbohydr Polym 82:1136–1142

    Article  CAS  Google Scholar 

  • Lee S-W, Chang S-H, Lai Y-S, Lin C-C, Tsai C-M, Lee Y-C, Chen J-C, Huang C-L (2014) Effect of temperature on the growth of silver nanoparticles using plasmon-mediated method under the irradiation of green LEDs. Materials 7:7781–7798

    Article  PubMed  PubMed Central  Google Scholar 

  • Levchenko AA, Li G, Boerio-Goates J, Woodfield BF, Navrotsky A (2006) TiO2 stability landscape: polymorphism, surface energy and bound water energetics. Chem Mater 18:6324–6332

    Article  CAS  Google Scholar 

  • Li X, Lu T, Zhang J, Xu J, Hu Q, Zhao S, Shen J (2009) A study of properties of “micelle-enhanced” polyelectrolyte capsules: structure, encapsulation and in vitro release. Acta Biomater 5:2122–2131

    Article  CAS  PubMed  Google Scholar 

  • Li X, Si Z, Lei Y, Tang J, Wang S, Su S, Song S, Zhao L, Zhang H (2010) Direct hydrothermal synthesis of single crystalline triangular Fe3O4 nanoprisms. Cryst Eng Comm 12:2060–2063

    Article  CAS  Google Scholar 

  • Liang XW, Xu ZP, Grice J, Zvyagin AV, Roberts MS, Liu X (2013) Penetration of nanoparticles into human skin. Curr Pharm Des 19:6353–6366

    Article  CAS  PubMed  Google Scholar 

  • Lin LL, Yamada M, Prow TW (2016) Imaging nanoparticle skin penetration in humans. In: Hamblin MR, Avci P, Eds PTW (eds) Nanoscience in dermatology. Academic Press, London, pp 351–364

    Google Scholar 

  • Lin CH, Chen CH, Lin ZC, Fang JY (2017) Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 25:219–234

    Article  CAS  PubMed  Google Scholar 

  • Lingayat VJ, Zarekar NS, Shendge RS (2017) Solid lipid nanoparticles: a review. Nanosci Nanotechnol Res 4:67–72

    Google Scholar 

  • Louchet F, Weiss J, Richeton T (2006) Hall-Petch Law revisited in terms of collective dislocation dynamics. Phys Rev Lett 97:075504–075509

    Article  PubMed  CAS  Google Scholar 

  • Lundquist P, Artursson P (2016) Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev (B) 106:256–276

    Article  CAS  Google Scholar 

  • Lundquist B, Rawstern R, Varga B, Liu L, Bergeson L (2017) The next big thing is really small: how nanotechnology will change the future of your business, Available at: http://www.nanotech-now.com/current-uses.htm. Accessed 5 Feb 2015

  • Lv Y, Wang H, Wang X, Bai J (2009) Synthesis, characterization and growing mechanism of monodisperse Fe3O4 microspheres. J Cryst Growth 311:3445–3450

    Article  CAS  Google Scholar 

  • Maghsoodi M, Yari Z (2014) Effect of temperature on wet agglomeration of crystals. Iran J Basic Med Sci 17:344–350

    PubMed  PubMed Central  Google Scholar 

  • Maham M, Nasrollahzadeh M, Sajadi SM, Nekoei M (2017) Biosynthesis of Ag/reduced graphene oxide/Fe3O4 using Lotus garcinii leaf extract and its application as a recyclable nanocatalyst for the reduction of 4-nitrophenol and organic dyes. J Colloid Interf Sci 497:33–42

    Article  CAS  Google Scholar 

  • Maisel K, Ensign L, Reddy M, Cone R, Hanes J (2015) Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. J Control Release 197:48–57

    Article  CAS  PubMed  Google Scholar 

  • Maryami M, Nasrollahzadeh M, Mehdipour E, Sajadi SM (2017) Green synthesis of the Pd/perlite nanocomposite as a heterogeneous catalyst for reduction of nitroarenes and organic dyes in water. Sep Purif Technol 184:298–307

    Article  CAS  Google Scholar 

  • Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mat Sci Engg C 60:569–578

    Article  CAS  Google Scholar 

  • McClements DJ (2012) Nanoemulsions versus microemulsions: clarification of critical differences. Soft Matter 8:1719–1729

    Article  CAS  Google Scholar 

  • Mitchnick M, Lee R, Cohen J, Becker B, Frank B, Gwozdz G, Zubris K, Okoh J, Goldman L (1991) Particle sciences drug development services, Available at: www.particlesciences.com. Accessed 15 May 2017

  • Mocan L (2013) Drug delivery applications of gold nanoparticles. Biotechnol Mol Bio Nanomed 1:1–7

    CAS  Google Scholar 

  • Momeni SS, Nasrollahzadeh M, Rustaiyan A (2017) Biosynthesis and application of Ag/bone nanocomposite for the hydration of cyanamides in Myrica gale L. extract as a green solvent. J Colloid Interf Sci 499:93–101

    Article  CAS  Google Scholar 

  • Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142

    Article  CAS  PubMed  Google Scholar 

  • Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    Article  CAS  PubMed  Google Scholar 

  • Nasir A (2010) Nanodermatology: a Glimpse of Caution Just Beyond the Horizon – Part II, Available at: http://www.skintherapyletter.com/2010/15.9/2.html. Accessed 20 May 2017

  • Nasrollahzadeh M, Atarod M, Jaleh B, Gandomi M (2016a) In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, Congo red and Methylene blue. Ceram Int 42:8587–8596

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM, Hatamifard A (2016b) Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites. Appl Catal B Environ 191:209–227

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Momeni SS, Sajadi SM (2017) Green synthesis of copper nanoparticles using Plantago asiatica leaf extract and their application for the cyanation of aldehydes using K4Fe(CN)6. J Colloid Interf Sci 506:471–477

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Issaabadi Z, Sajadi SM (2018a) Green synthesis of a Cu/MgO nanocomposite by Cassytha filiformis L. extract and investigation of its catalytic activity in the reduction of methylene blue, congo red and nitro compounds in aqueous media. RSC Adv 8:3723–3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasrollahzadeh M, Issaabadi Z, Sajadi SM (2018b) Green synthesis of Pd/Fe3O4 nanocomposite using Hibiscus tiliaceus L. extract and its application for reductive catalysis of Cr(VI) and nitro compounds. Sep Purif Technol 197:253–260

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM, Maham M, Kohsari I (2018c) Biosynthesis, characterization and catalytic activity of the Pd/bentonite nanocomposite for base- and ligand-free oxidative hydroxylation of phenylboronic acid and reduction of Chromium (VI) and nitro compounds. Micropor Mesopor Mater 271:128–137

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Sajjadi M, Dasmeh HR, Sajadi SM (2018d) Green synthesis of the Cu/sodium borosilicate nanocomposite and investigation of its catalytic activity. J Alloy Compd 763:1024–1034

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Issaabadi Z, Sajadi SM (2019) Green synthesis of Cu/Al2O3 NPs as an efficient and recyclable catalyst for reduction of 2,4-dinitrophenylhydrazine, Methylene blue and Congo red. Compos B Eng 166:112–119

    Article  CAS  Google Scholar 

  • Nastiti CMRR, Ponto T, Abd E, Grice JE, Benson HAE, Roberts MS (2017) Topical nano and microemulsions for skin delivery. Pharmaceutics 9:37

    Article  PubMed Central  Google Scholar 

  • Noviendri D (2014) Microencapsulation of fucoxanthin by water-in-oil-in water (w/o/w) double emulsion solvent evaporation method: a review. Squalen Bull Mar Fish Postharvest Biotechnol 9:137–150

    Article  Google Scholar 

  • Núñeza JD, Benito AM, González R, Aragón J, Arenal R, Maser WK (2014) Integration and bioactivity of hydroxyapatite grown on carbon nanotubes and graphene oxide. Carbon 79:590–604

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64:1447–1483

    Article  CAS  PubMed  Google Scholar 

  • Panwar P, Pandey B, Lakhera PC, Singh KP (2010) Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. Int J Nanomedicine 5:101–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paranjpe M, Müller-Goymann CC (2014) Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci 15:5852–5873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  CAS  PubMed  Google Scholar 

  • Parker R (2017) Quantum confinement: effects, observations and insights. Nova Science Publishers, New York

    Google Scholar 

  • Pauw BR, Kastner C, Thunemann AF (2017) Nanoparticle size distribution quantification: results of a small-angle X-ray scattering inter-laboratory comparison. J Appl Cryst 50(5):1280–1288

    Article  CAS  Google Scholar 

  • Peddieson J, Chamkha AJ (2016) Modeling of nanofluid aggregation. Curr Nanomater 1(2):117–123

    Article  CAS  Google Scholar 

  • Peña-Parás L, Sánchez-Fernández JA, Vidaltamayo R (2018) Nanoclays for biomedical applications. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of ecomaterials. Springer, Cham, pp 1–19

    Google Scholar 

  • Ragaei M, Sabry AH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3:528–545

    Google Scholar 

  • Rajput N (2015) Methods of preparation of nanoparticles-a review. Int J Adv Res Technol 7:1806–1811

    Google Scholar 

  • Ramteke KH, Joshi SA, Dhole SN (2012) Solid lipid nanoparticle: A review. IOSR J Pharm 2(6):34–44

    Google Scholar 

  • Rector DR, Bunker BC (1995) Effect of colloidal aggregation on the sedimentation and rheological properties of tank waste. United States: N. p., 1995. Web. Pacific Northwest Lab., Richland, WA, USA. https://doi.org/10.2172/113874.PNL-10761

    Book  Google Scholar 

  • Riasat R, Guangjun N, Riasat Z, Aslam I (2016) Effects of nanoparticles on gastrointestinal disorders and therapy. J Clin Toxicol 6:313

    Article  CAS  Google Scholar 

  • Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127:143–153

    Article  CAS  PubMed  Google Scholar 

  • Saini JK, Nautiyal U, Kumar MS, Singh D, Anwar F (2014) Microemulsions: a potential novel drug delivery system. Int J Pharm Med Res 2:15–20

    Google Scholar 

  • Sajanlal PR, Pradeep T (2009) Mesoflowers: a new class of highly efficient surface-enhanced Raman active and infrared-absorbing materials. Nano Res 2:306–320

    Article  CAS  Google Scholar 

  • Sajjadi M, Nasrollahzadeh M, Sajadi SM (2017) Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus L. leaf extract and evaluation of its catalytic activity. J Colloid Interf Sci 497:1–13

    Article  CAS  Google Scholar 

  • Sanders WC (2018) Basic principles of nanotechnology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Schasfoort RBM (2017) Introduction to surface plasmon resonance. In: Schasfoorst RBM (ed) Handbook of surface plasmon resonance, 2nd edn. Royal Soc Chem, London, pp 1–26

    Chapter  Google Scholar 

  • Schneider CS, Craig S, Xu Q, Boylan NJ, Chisholm J, Tang BC (2017) Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci Adv 3(4):e1601556. https://doi.org/10.1126/sciadv.1601556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selmer-Olsen E, Ratnaweera HC, Pehrson R (1996) A novel treatment process for dairy wastewater with chitosan produced from shrimp-shell waste. Wat Sci Tech 34:33–40

    Article  CAS  Google Scholar 

  • Shah N, Mewada RK, Shah T (2011) Application of biodegradable polymers in controlled drug delivery. Proc Int Conf on current trends in technology. Nirma University, Ahmedabad, pp 1–6

    Google Scholar 

  • Siddiqi KS, Husen A (2016a) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016b) Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res Lett 11:482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2017a) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi KS, Husen A (2017b) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqi KS, Rahman A, Tajuddin, Husen A (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res Lett 11:498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqi KS, Husen A, Rao RAK (2018a) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16:14

    Article  CAS  Google Scholar 

  • Siddiqi KS, Rahman A, Tajuddin HA (2018b) Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett 13:141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqi KS, Husen A, Sohrab SS, Osman M (2018c) Recent status of nanomaterials fabrication and their potential applications in neurological disease management. Nanoscale Res Lett 13:231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suganya V, Anuradha V (2017) Microencapsulation and Nanoencapsulation: a review. Int J Pharm Clin Res 9(3):233–239

    Article  Google Scholar 

  • Tamarov K, Näkki S, Xu W, Lehto V-P (2018) Approaches to improve the biocompatibility and systemic circulation of inorganic porous nanoparticles. J Mater Chem B 6:3632–3649

    Article  CAS  PubMed  Google Scholar 

  • Tan C, Fung BM, Newman JK, Vu C (2001) Organic aerogels with very high impact strength. Adv Mater 13:644–651

    Article  CAS  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  CAS  PubMed  Google Scholar 

  • Veszelka S, Bocsik A, Walter FR, Hantosi D, Deli MA (2015) Blood-brain barrier co-culture models to study nanoparticle penetration: focus on co-culture systems. Acta Biol Szeged 59:157–168

    Google Scholar 

  • Wang L-P, Wang J-Y (2014) Skin penetration of inorganic and metallic nanoparticles. J Shanghai Jiaotong Univ (Sci) 19:691–697

    Article  Google Scholar 

  • Wang Q, Yan J, Yang J, Li B (2016b) Nanomaterials promise better bone repair. Mater Today 19:451–463

    Article  CAS  Google Scholar 

  • Wang Y, Li P, Tran TT-D, Zhang J, Kong L (2016c) Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nano 6:26–32

    Google Scholar 

  • Wang M, Lee RJ, Bi Y, Li L, Yan G, Lu J, Meng Q, Teng L, Xie J (2017) Transferrin-conjugated liposomes loaded with novel dihydroquinoline derivatives as potential anticancer agents. PLoS One 12:e0186821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia T, Zhu Y, Mu L, Zhang Z-F, Liu S (2016) Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century. Nat Sci Rev 3:416–429

    CAS  Google Scholar 

  • Yah CS, Iyuke SE, Simate GS (2011) A review of nanoparticles toxicity and their routes of exposures. Iranian J Pharm Sci 8:299–314

    Google Scholar 

  • Yasun E, Kang H, Erdal H, Cansiz S, Ocsoy I, Huang Y-F, Tan W (2013) Cancer cell sensing and therapy using affinity tag-conjugated gold nanorods. Interface Focus 3:1–9

    Article  Google Scholar 

  • Yeagle P (2017) Nanoparticles for drug delivery in lungs. Science 356:37–38

    PubMed  Google Scholar 

  • Zhang Y, Nypelö T, Salas C, Rojas OJ (2013) Cellulose nanofibrils: from strong materials to bioactive surfaces. J Renew Mater 1:195–206

    Article  CAS  Google Scholar 

  • Zielińska-Jurek A (2014) Progress, challenge, and perspective of bimetallic TiO2-based photocatalysts. J Nanomater 4:1–17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nasrollahzadeh, M., Sajadi, S.M., Iqbal, M. (2019). Basic Chemistry and Biomedical Significance of Nanomaterials. In: Husen, A., Iqbal, M. (eds) Nanomaterials and Plant Potential. Springer, Cham. https://doi.org/10.1007/978-3-030-05569-1_2

Download citation

Publish with us

Policies and ethics