Skip to main content

Nanomaterials and Plant Potential: An Overview

  • Chapter
  • First Online:
Nanomaterials and Plant Potential

Abstract

In the recent years, nanotechnology has come up as a cutting-edge field of science and technology with the potential to revolutionize the technological advances in industry, biomedicine and agriculture. Nanomaterials (NMs) can be synthesized using chemical, physical and biological methods. Of these, the biomaterial-based synthesis is not only cost-effective and eco-friendly but also free from the dependence on high pressure, energy, temperature and lethal chemicals. Nanoparticles (NPs) are crystalline or amorphous, having an extremely small size in the range of 1–100 nm. These particles are derived mainly from carbons, metals, ceramics, lipids, semiconductors and polymeric materials. In the biological methods of NP fabrication, plants as well as microbes (certain algae, fungi, bacteria and viruses) are used as the reducing and/or capping agents. The size, morphology and stability of NMs depend on the method of preparation, nature of solvent, mixing ratio, concentration, pH and temperature of reaction mixture and the strength of reducing agent. These particles are then characterized by using various techniques including UV-vis, Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, dynamic light scattering and zeta potential measurements, among others. The NMs thus produced have shown significant application in various sectors including those of agri-food (carbon, fullerene, Ag, ZnO), cosmetics (TiO2, ZnO, fullerene, Fe2O3 Cu, Ag, Au), catalysts (NiO, Pt, Pd) lubricants and fuel additives (CeO2, Pt, MoS3), paints and coatings (TiO2, SiO2, Ag, CdSe), agrochemicals (SiO2), food packaging (Ag, TiO2, ZnO, TiN, nanoclay), nanomedicine and nanocarriers (Au, Ag, Fe, magnetic materials). Recent studies have also shown that the plant-mediated fabricated NPs are more efficient in attaching pharmacologically active substances or residues and hence are therapeutically more effective than those produced by physico-chemical means. This chapter highlights the current advances in the development of nanotechnology, with special emphasis on NP synthesis, factors affecting this process, plant-NP interaction and the future prospects of plant-based nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140

    Article  CAS  Google Scholar 

  • Ahamed M, AlSaalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848

    Article  CAS  PubMed  Google Scholar 

  • Akhavan O, Ghaderi E (2012) Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf Coat Technol 205:219–223

    Article  CAS  Google Scholar 

  • Ali SM, Yousef NMH, Nafady NA (2015) Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi. J Nanomater 2015:218904

    Google Scholar 

  • Ali A, Zafar H, Zia M, Ul Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand R, Kulothungan S (2014) Silver mediated bacterial nanoparticles as seed dressing against crown rot pathogen of groundnut. Arch Appl Sci Res 6:109–113

    CAS  Google Scholar 

  • Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I (2015) Nanoscale copper in the soil-plant system: toxicity and underlying potential mechanisms. Environ Res 138:306–325

    Article  CAS  PubMed  Google Scholar 

  • Aqel A, El-Nour KMMA, Ammar RAA, Al-Warthan A (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arab J Chem 5:1–23

    Article  CAS  Google Scholar 

  • Arokiyaraj S, Saravanan M, Udaya Prakash NK (2013) Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: an in vitro study. Mat Res Bull 48:3323–3327

    Article  CAS  Google Scholar 

  • Asanithi P, Chaiyakun S, Limsuwan P (2012) Growth of silver nanoparticles by DC magnetron sputtering. J Nanomater 2012:963609

    Article  CAS  Google Scholar 

  • Asha-Rani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  Google Scholar 

  • Astefanei A, Núñez O, Galceran MT (2015) Characterisation and determination of fullerenes: a critical review. Anal Chim Acta 882:1–21

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310

    Google Scholar 

  • Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857

    Article  CAS  PubMed  Google Scholar 

  • Barrett CS, Cohen JB, Faber J, Jenkins R, Leyden DE, Russ JC, Predecki PK (1986) Advances in X-ray analysis, vol 29. Plenum Press, New York

    Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Article  CAS  Google Scholar 

  • Boro RC, Kaushal J, Nangia Y, Wangoo N, Bhasinc A, Suri CR (2011) Gold nanoparticles catalyzed chemiluminescence immunoassay for detection of herbicide 2,4-dichlorophenoxyacetic acid. Analyst 136:2125–2130

    Article  CAS  Google Scholar 

  • Brice-Profeta S, Arrio MA, Troncetal E (2005) Magneticorderin ǖFE;-Fe2O3 nanoparticles: a XMCD study. J Magne Magne Mat 288:354–365

    Article  CAS  Google Scholar 

  • Cao YC (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 80:1536–1540

    Article  Google Scholar 

  • Chauhan RPS, Gupta C, Prakash D (2012) Methodological advancements in green nanotechnology and their applications in biological synthesis of herbal nanoparticles. Int J Bioassays 7:6–10

    Google Scholar 

  • Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Meng HA, Xing GM, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Wong YS, Zheng W, Bai Y, Huang L (2008) Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Coll Surf B 67:26–31

    Article  CAS  Google Scholar 

  • Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández-Pacheco R, Marquina C, Ibarra MR, de la Fuente JM, Rubiales D, Pérez-de-Luque A, Risueño MC (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561

    Article  PubMed  CAS  Google Scholar 

  • De Jaeger N, Demeyere H, Finsy R, Sneyers R, Vanderdeelen J, van der Meeren P, van Laethem M (1991) Particle sizing by photon correlation spectroscopy. Part I. Monodisperse latices. Influence of scattering angle and concentration of dispersed material. Part Part Sys Charact 8:179–186

    Article  Google Scholar 

  • Doshi R, Braida W, Christodoulatos C, Wazne M, O’Connor G (2008) Nanoaluminum: transport through sand columns and environmental effects on plant and soil communication. Environ Res 106:296–303

    Article  CAS  PubMed  Google Scholar 

  • Dubas ST, Pimpan V (2008) Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection. Mater Lett 62:2661–2663

    Article  CAS  Google Scholar 

  • Duman F, Ismail Ocsoy I, Kup FO (2016) Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Mater Sci Engg C 60:333–338

    Article  CAS  Google Scholar 

  • Ekimov AI, Onuschchenko AA (1981) Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett 34:345–348

    Google Scholar 

  • El-Rahman AFA, Mohammad TGM (2013) Green synthesis of silver nanoparticle using Eucalyptus globulus leaf extract and its antibacterial activity. J Appl Sci Res 9:6437–6440

    Google Scholar 

  • Embiale A, Hussein M, Husen A, Sahile S, Mohammed K (2016) Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. J Agron 15:45–57

    Article  CAS  Google Scholar 

  • Eric D (1987) Engines of creation: the coming area of nanotechnology. Anchor Library of Science

    Google Scholar 

  • Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    Article  CAS  PubMed  Google Scholar 

  • FAO (2009) How to feed the world in 2050. FAO Report Oct. 2009, pp 1–35

    Google Scholar 

  • Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7:1–37

    Article  CAS  Google Scholar 

  • Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  • Freestone I, Meeks N, Sax M, Higgitt C (2007) The Lycurgus cup – a Roman nanotechnology. Gold Bull 40:270–277

    Article  CAS  Google Scholar 

  • Getnet Z, Husen A, Fetene M, Yemata G (2015) Growth, water status, physiological, biochemical and yield response of stay green sorghum {Sorghum bicolor (L.) Moench} varieties-a field trial under drought-prone area in Amhara regional state, Ethiopia. J Agron 14:188–202

    Article  CAS  Google Scholar 

  • Grillo R, Pereira AES, Nishisaka CS, Lima RD, Oehlke K, Greiner R, Leonardo F, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide. An environmentally safer alternative for weed control. J Hazard Mater 278:163–171

    Article  CAS  PubMed  Google Scholar 

  • Gujrati M, Malamas A, Shin T, Jin E, Sun Y, Lu ZR (2014) Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol Pharm 11:2734–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo D, Xie G, Luo J (2014) Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys 47:13001

    Article  CAS  Google Scholar 

  • Hafez EE, Hassan HS, Elkady M, Salama E (2014) Assessment of antibacterial activity for synthesized zinc oxide nanorods against plant pathogenic strains. Int J Sci Technol Res 3:318–324

    Google Scholar 

  • Hassan MS, Amna T, Yang OB, El-Newehy MH, Al-Deyab SS, Khil MS (2012) Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity. Colloids Surf B Biointerfaces 97:201–206

    Article  CAS  PubMed  Google Scholar 

  • Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumours under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holgate ST (2010) Exposure, uptake, distribution and toxicity of nanomaterials in humans. J Biomed Nanotechnol 6:1–19

    Article  CAS  PubMed  Google Scholar 

  • Holzinger M, Le Goff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16:26644–26653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou J, Shang J, Jiao C, Jiang P, Xiao H, Luo L, Liu T (2013) A core crosslinked polymeric micellar platium(IV) prodrug with enhanced anticancer efficiency. Macromol Biosci 13:954–965

    Article  CAS  PubMed  Google Scholar 

  • Husen A (2017) Gold nanoparticles from plant system: synthesis, characterization and their application. In: Ghorbanpour M, Manika K, Varma A (eds) Nanoscience and plant–soil systems, vol 48. Springer, Cham, pp 455–479

    Google Scholar 

  • Husen A, Siddiqi KS (2014a) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16

    Article  CAS  Google Scholar 

  • Husen A, Siddiqi KS (2014b) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Husen A, Siddiqi KS (2014c) Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnol 12:28

    Article  CAS  Google Scholar 

  • Husen A, Iqbal M, Aref MI (2014) Growth, water status and leaf characteristics of Brassica carinata under drought stress and rehydration conditions. Braz J Bot 37:217–227

    Article  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2016) IAA-induced alteration in growth and photosynthesis of pea (Pisum sativum L.) plants grown under salt stress. J Environ Biol 37:421–429

    CAS  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2017) Plant growth and foliar characteristics of faba bean (Vicia faba L.) as affected by indole-acetic acid under water-sufficient and water-deficient conditions. J Environ Biol 38:179–186

    Article  Google Scholar 

  • Husen A, Iqbal M, Sohrab SS, Ansari MKA (2018) Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agri Food Sec 7:44

    Article  Google Scholar 

  • Husen A, Iqbal M, Khanum N, Aref IM, Sohrab SS, Meshresa G (2019) Modulation of salt-stress tolerance of niger (Guizotia abyssinica), an oilseed plant, by application of salicylic acid. J Environ Biol 40:40:94–104

    Google Scholar 

  • Hussein M, Embiale A, Husen A, Aref IM, Iqbal M (2017) Salinity-induced modulation of plant growth and photosynthetic parameters in faba bean (Vicia faba) cultivars. Pak J Bot 49:867–877

    CAS  Google Scholar 

  • Iavicoli I, Leso V, Beezhold DH, Shvedova AA (2017) Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol 329:96–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim KS (2013) Carbon nanotubes-properties and applications: a review. Carbon Lett 14:131–144

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  • Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2016) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25:443–447

    Article  PubMed  PubMed Central  Google Scholar 

  • Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharma J 25:443–447

    Article  CAS  Google Scholar 

  • Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    Article  CAS  Google Scholar 

  • Jung JH, Cheol OH, Soo NH, Ji JH, Soo KS (2006) Metal nanoparticle generation using a small ceramic heater with a local heating area. J Aerosol Sci 37:1662–1670

    Article  CAS  Google Scholar 

  • Kaida T, Kobayashi K, Adachi M, Suzuki F (2004) Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics. J Cosmet Sci 55:219–220

    PubMed  Google Scholar 

  • Kang T, Wang F, Lu L, Zhang Y, Liu T (2010) Methyl parathion sensors based on gold nanoparticles and Nafion film modified glassy carbon electrodes. Sensors Actuators B Chem 145:104–109

    Article  CAS  Google Scholar 

  • Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17

    Article  CAS  Google Scholar 

  • Karnan T, Selvakumar SAS (2016) Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange dye. J Mol Struct 1125:358–365

    Article  CAS  Google Scholar 

  • Khadri H, Alzohairy M, Janardhan A, Kumar AP, Narasimha G (2013) Green synthesis of silver nanoparticles with high fungicidal activity from olive seed extract. Adv Nanopart 2:241–246

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kim DY, Saratale RG, Shinde S, Syed A, Ameen F, Ghodake G (2018) Green synthesis of silver nanoparticles using Laminaria japonica extract: characterization and seedling growth assessment. J Clean Prod 172:2910–2918

    Article  CAS  Google Scholar 

  • Klug HP, Alexander LE (1974) X-ray diffraction procedures for poly-crystallite and amorphous materials, 2nd edn. Wiley, New York

    Google Scholar 

  • Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Fela MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  • Kot M, Major Ł, Lackner JM, Chronowska-Przywara K, Janusz M, Rakowski W (2016) Mechanical and tribological properties of carbon-based graded coatings. J Nanomater 2016:1–14

    Article  CAS  Google Scholar 

  • Laware S, Raskar S (2014) Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. Int J Curr Microbiol App Sci 3:874–881

    CAS  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675

    Article  CAS  PubMed  Google Scholar 

  • Leonhardt U (2007) Optical metamaterials: invisibility cup. Nat Photon 1:207–208

    Article  CAS  Google Scholar 

  • Lidén G (2011) The European Commission tries to define nanomaterials. Ann Occup Hyg 55:1–5

    PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Qiao SZ, Hu QH (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7:425–443

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Liu D, Zhao L, Han J, Liang Y, Wang P, Zhou Z (2014) A novel magnetic ionic liquid modified carbon nanotube for the simultaneous determination of aryloxyphenoxy-propionate herbicides and their metabolites in water. Anal Chim Acta 852:88–96

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud WMM, Rastogi T, Kümmerer K (2017) Application of titanium dioxide nanoparticles as a photocatalyst for the removal of micropollutants such as pharmaceuticals from water. Curr Opin Green Sust Chem 6:1–10

    Google Scholar 

  • Mallakpour S, Sirous F (2015) Surface coating of α-Al2O3 nanoparticles with poly(vinyl alcohol) as biocompatible coupling agent for improving properties of bio-active poly(amide-imide) based nanocomposites having l-phenylalanine linkages. Prog Org Coat 85:138–145

    Article  CAS  Google Scholar 

  • McWilliams A (2018) Nanocomposites, nanoparticles, nanoclays and nanotubes: global markets to 2022. BCC Research Report Overview (June 2018), pp 1–7

    Google Scholar 

  • Min Y, Li J, Liu F, Yeow EK, Xing B (2014) NIR light mediated photoactivation pt based antitumor prodrug and simultaneous cellular apoptosis imaging via upconversion nanoparticles. Angew Chem Int Ed Engl 53:1012–1016

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB (2017) Integrated approach of Agri-nanotechnology: challenges and future trends. Front Plant Sci 8:471

    PubMed  PubMed Central  Google Scholar 

  • Morsy MK, Khalaf HH, Sharoba AM, El-Tanahi HH, Cutter CN (2014) Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J Food Sci 79:M675–M682

    Article  CAS  PubMed  Google Scholar 

  • Mucalo MR, Bullen CR, Manley-Harris M, McIntire TM (2002) Arabinogalactan from the Western larch tree: a new, purified and highly water-soluble polysaccharide-based protecting agent for maintaining precious metal nanoparticles in colloidal suspension. J Mat Sci 37:493–504

    Article  CAS  Google Scholar 

  • Murugan K, Labeeba MA, Panneerselvam C, Dinesh D, Suresh U, Subramaniam J, Madhiyazhagan P, Hwang J, Wang L, Nicoletti M, Benelli G (2015) Aristolochia indica green synthesized silver nanoparticles: a sustainable control tool against the malaria vector Anopheles stephensi. Res Vet Sci 102:127–135

    Article  CAS  PubMed  Google Scholar 

  • Nagajyothi PC, Muthuraman P, Sreeknath TVM, Kim DH, Shim J (2017) Anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab J Chem 10:215–225

    Article  CAS  Google Scholar 

  • Naseem T, Farrukh MA (2015) Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J Chem 2015:912342

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM, Maham M (2015) Green synthesis of palladium nanoparticles using Hippophae rhamnoides Linn leaf extract and their catalytic activity for the Suzuki–Miyaura coupling in water. J Mol Catal A Chem 396:297–303

    Article  CAS  Google Scholar 

  • Nava OJ, Soto-Robles CA, Góomez-Gutiérreza CM, Vilchis-Nestor AR, Castro-Beltrán A, Olivas A, Luque PA (2017) Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. J Mol Struct 1147:1–6

    Article  CAS  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  PubMed  Google Scholar 

  • Ngo QB, Dao TH, Nguyen HC, Tran XT, Nguten TV, Khuu TD, Huynh TH (2014) Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Adv Nat Sci Nanosci Nanotechnol 5:1–7

    Article  CAS  Google Scholar 

  • Nhan LV, Ma C, Rui Y, Liu S, Li X, Xing B, Liu L (2015) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5:11618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nhan LV, Ma C, Rui Y, Cao W, Deng Y, Liu L, Xing B (2016) The effects of Fe2O3 nanoparticles on physiology and insecticide activity in non-transgenic and Bt-transgenic cotton. Front Plant Sci 6:1263

    PubMed  PubMed Central  Google Scholar 

  • O’Brien SC, Heath JR, Curl RF, Smalley RE (1988) Photophysics of buckminsterfullerene and other carbon cluster ions. J Chem Phys 88:220

    Article  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980

    Article  CAS  PubMed  Google Scholar 

  • Ojha NK, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON, Santra S (2017) Copper nanoparticles as inexpensive and efficient catalyst: a valuable contribution in organic synthesis. Coord Chem Rev 353:1–57

    Article  CAS  Google Scholar 

  • Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9:34–42

    Article  CAS  Google Scholar 

  • Pandey A, Kulkarni A, Roy B, Goldman A, Sarangi S, Sengupta P, Phipps C, Kopparam J, Oh M, Basu S, Kohandel M, Sengupta S (2014) Sequential application of a cytotoxic nanoparticle and a PI3 K inhibitor enhances antitumor efficacy. Cancer Res 74:675–685

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Pereira AES, Grillo R, Mello NFS, Rosa AH, Fraceto LF (2014) Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215

    Article  CAS  PubMed  Google Scholar 

  • Periasamy VS, Alshatwi AA (2013) Tea polyphenols modulate antioxidant redox system on cisplatin-induced reactive oxygen species generation in a human breast cancer cell. Basic Clin Pharmacol Toxicol 112:374–384

    Article  CAS  PubMed  Google Scholar 

  • Poinern GEJ (2014) A laboratory course in nanoscience and nanotechnology, 1st edn. CRC Press Taylor & Francis, Boca Raton

    Google Scholar 

  • Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E, Blumenthal R (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26:523–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi M, Zhang K, Li S, Wu J, Pham-Huy C, Diao X, Xiao D, He H (2016) Superparamagnetic Fe3O4 nanoparticles: synthesis by a solvothermal process and functionalization for a magnetic targeted curcumin delivery system. New J Chem 4480:4480–4491

    Article  CAS  Google Scholar 

  • Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1955

    Article  CAS  Google Scholar 

  • Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913

    Article  CAS  Google Scholar 

  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rawat MK, Jain A, Singh S, Mehnert W, Thunemann AF, Souto EB, Mehta A, Vyas SP (2011) Studies on binary lipid matrix based solid lipid nanoparticles of repaglinide: in vitro and in vivo evaluation. J Pharm Sci 100:2366–2378

    Article  CAS  PubMed  Google Scholar 

  • Risom L, Møller P, Loft S (2005) Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res 592:119–137

    Article  CAS  PubMed  Google Scholar 

  • Roldán MV, Pellegri N, de Sanctis O (2013) Electrochemical method for Ag-PEG nanoparticles synthesis. J Nanopart 2013:524150

    Article  CAS  Google Scholar 

  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815

    Article  PubMed  PubMed Central  Google Scholar 

  • Rui M, Ma C, Tang X, Yang J, Jiang F, Pan Y, Xiang Z, Hao Y, Rui Y, Cao W, Xing B (2018) Phytotoxicity of silver nanoparticles to peanut (Arachis hypogaea L.): physiological responses and food safety. ACS Sustain Chem Eng 5:6557–6567

    Article  CAS  Google Scholar 

  • Sadiq IM, Pakrashi S, Chandrasekaran N, Mukherjee A (2011) Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanopart Res 13:3287–3299

    Article  CAS  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3

    Article  Google Scholar 

  • Shaalan M, Saleh M, El-Mahdy M, El-Matbouli M (2016) Recent progress in applications of nanoparticles in fish medicine: a review. Nanomed Nanotechnol Biol Med 12:701–710

    Article  CAS  Google Scholar 

  • Shankramma K, Yallappa S, Shivanna MB, Manjanna J (2016) Fe2O3 magnetic nanoparticles to enhance Solanum lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci 6:983–990

    Article  CAS  Google Scholar 

  • Shao W, Nabb D, Renevier N, Sherrington I, Luo JK (2012) Mechanical and corrosion resistance properties of TiO2 nanoparticles reinforced Ni coating by electrodeposition. IOP Conf Ser Mater Sci Eng 40:12043

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016a) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016b) Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nanoscale Res Lett 11:363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016c) Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res Lett 11:400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016d) Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res Lett 11:482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2017a) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi KS, Husen A (2017b) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqi KS, Rahman A, Tajuddin, Husen A (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Res Lett 11:498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siddiqi KS, Husen A, Rao RAK (2018a) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16:14

    Article  CAS  Google Scholar 

  • Siddiqi KS, Rahman A, Tajuddin, Husen A (2018b) Properties of zinc oxide nanoparticles and their activity against microbes. Nano Res Lett 13:141

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A, Sohrab SS, Osman M (2018c) Recent status of nanomaterials fabrication and their potential applications in neurological disease management. Nano Res Lett 13:231

    Article  CAS  Google Scholar 

  • Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino JC (2006) Processing and structure relationships in electrospinning of ceramic fiber systems. J Am Ceram Soc 89:395–407

    Article  CAS  Google Scholar 

  • Soares C, Branco-Neves S, de-Sousa A, Pereira R, Fidalgo F (2016) Ecotoxicological relevance of nano-NiO and acetaminophen to Hordeum vulgare L.: combining standardized procedures and physiological endpoints. Chemosphere 165:442–452

    Article  CAS  PubMed  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  PubMed  Google Scholar 

  • Song G, Hou W, Gao Y, Wang Y, Lin L, Zhang Z, Niu Q, Ma R, Mu L, Wang H (2016) Effects of CuO nanoparticles on Lemna minor. Bot Stud 57:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–5654

    Article  CAS  PubMed  Google Scholar 

  • Sotiriou GA, Teleki A, Camenzind A, Krumeich F, Meyer A, Panke S, Pratsinis SE (2011) Nanosilver on nanostructured silica: antibacterial activity and Ag surface area. Chem Eng J 170:547–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soundarrajan C, Sankari A, Dhandapani P, Maruthamuthu S, Ravichandran S, Sozhan G, Palaniswamy N (2012) Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications. Bioprocess Biosyst Eng 35:827–833

    Article  CAS  PubMed  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin RL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Sukirtha R, Priyanka KM, Antony JJ, Kamalakkannan S, Thangam R, Gunasekaran P, Krishnan M, Achiraman S (2012) Cytotoxic effect of green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem 47:273–279

    Article  CAS  Google Scholar 

  • Syu Y, Hung J, Chen JC, Chuang H (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64

    Article  CAS  PubMed  Google Scholar 

  • Thatoi P, Kerry RG, Gouda S, Das G, Pramanik K, Thatoi H, Patra JK (2016) Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J Photochem Photobiol B Biol 163:311–318

    Article  CAS  Google Scholar 

  • Thomas S, Harshita BSP, Mishra P, Talegaonkar S (2015) Ceramic nanoparticles: fabrication methods and applications in drug delivery. Curr Pharm Des 21:6165–6188

    Article  CAS  PubMed  Google Scholar 

  • Tien DC, Tseng KH, Liao CY, Huang JC, Tsung TT (2008) Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. J Alloys Compd 463:408–411

    Article  CAS  Google Scholar 

  • Tippayawat P, Phromviyo N, Boueroy P, Chompoosor A (2016) Green synthesis of silver nanoparticles in Aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. Peer J 4:e2589

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran PA, Webster TJ (2011) Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomedicine 6:1553–1558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uddin I, Poddar P, Kumar U, Phogat N (2013) A novel microbial bio-milling technique for the size reduction of micron sized Gd2O3 particles into nanosized particles. J Green Sci Tech 1:48–53

    Article  Google Scholar 

  • Umar S, Anjum NA, Ahmad P, Iqbal M (2018) Drought-induced changes in growth, photosynthesis, and yield traits in mungbean: Role of potassium and sulfur nutrition. In: Ozturk M, Hakeem KR, Ashraf M (eds) Crop production technologies for sustainable use and conservation: physiological and molecular advances. Apple Academic Press, Waretown, NJ, pp 79–89

    Google Scholar 

  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2016) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127

    Article  PubMed  CAS  Google Scholar 

  • Vesenka J, Manne S, Giberson R, Marsh T, Henderson E (1993) Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules. Biophys J 65:992–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vimala K, Sundarraj S, Paulpandi M, Vengatesan S, Kannan S (2014) Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem 49:160–172

    Article  CAS  Google Scholar 

  • Vinković T, Novák O, Strnad M, Goessler W, Jurašin DD, Paradiković N, Vrček IV (2017) Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ Res 156:10–18

    Article  PubMed  CAS  Google Scholar 

  • Wang JJ, Sanderson BJ, Wang H (2007) Cyto-and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res 628:99–106

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang X, Song Y, Zhu C, Wang K, Guo Z (2013) Detecting and delivering platinum anticancer drugs using fluorescent maghemite nanoparticles. Chem Commun (Camb) 49:2786–2788

    Article  CAS  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf R, Matz H, Orion E, Lipozencic J (2003) Sunscreens–the ultimate cosmetic. Acta Dermatovenerol Croat 11:158–162

    PubMed  Google Scholar 

  • Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501

    Google Scholar 

  • Yousuf PY, Ahmad A, Hemant, Ganie AH, Aref IM, Iqbal M (2015) Potassium and calcium application ameliorates growth and oxidative homeostasis in salt-stressed Indian mustard (Brassica juncea) plants. Pak J Bot 47(5):1629–1639

    CAS  Google Scholar 

  • Yu Z, Sun X, Song H, Wang W, Ye Z, Shi L, Ding K (2015) Glutathione-responsive carboxymethyl chitosan nanoparticles for controlled release of herbicides. Mater Sci Appl 6:591–604

    CAS  Google Scholar 

  • Yu J, Xu D, Guan HN, Wang C, Huang LK, Chi DF (2016) Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater Lett 166:110–112

    Article  CAS  Google Scholar 

  • Zhang H, Chen G (2009) Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method. Environ Sci Technol 43:2905–2910

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Li N, Goebl J, Lu Z, Yin Y (2011) A systematic study of the synthesis of silver nanoplates: is citrate a "magic" reagent? J Am Chem Soc 133:18931–18939

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Song S, Wang C, Wu Q, Wang Z (2011) Determination of triazine herbicides in environmental water samples by high-performance liquid chromatography using graphene-coated magnetic nanoparticles as adsorbent. Anal Chim Acta 708:155–159

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Sache L (2009) Gold nanoparticles enhance DNA damage induced by anti-cancer drugs and radiation. Radiat Res 172:114–119

    Article  CAS  PubMed  Google Scholar 

  • Zur Mühlen A, Zur Mühlen E, Niehus H, Mehnert W (1996) Atomic force microscopy studies of solid lipid nanoparticles. Pharm Res 13:1411–1416

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Husen, A., Iqbal, M. (2019). Nanomaterials and Plant Potential: An Overview. In: Husen, A., Iqbal, M. (eds) Nanomaterials and Plant Potential. Springer, Cham. https://doi.org/10.1007/978-3-030-05569-1_1

Download citation

Publish with us

Policies and ethics