Skip to main content

Safe Deep Reinforcement Learning Hybrid Electric Vehicle Energy Management

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11352))

Abstract

The optimality-based design of the energy management of a hybrid electric vehicle is a challenging task due to the extensive and complex nonlinear reciprocal effects in the system, as well as the unknown vehicle use in real traffic. The optimization has to consider multiple continuous values of sensor and control variables and has to handle uncertain knowledge. The resulting decision making agent directly influences the objectives like fuel consumption. This contribution presents a concept which solves the energy management using a Deep Reinforcement Learning algorithm which simultaneously permits inadmissible actions during the learning process. Additionally, this approach can include further state variables like the battery temperature, which is not considered in classic energy management approaches. The contribution focuses on the used environment and the interaction with the Deep Reinforcement Learning algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Guzzella, L., Sciarretta, A.: Vehicle Propulsion Systems: Introduction to Modeling and Optimization, 3rd edn. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35913-2

    Book  Google Scholar 

  2. Banvait, H., Anwar, S., Chen, Y.: A rule-based energy management strategy for plugin hybrid electric vehicle (PHEV). In: American Control Conference (2009)

    Google Scholar 

  3. Lee, H.-D., Koo, E.-S., Sul, S.-K., Kim, J.-S.: Torque control strategy for a parallel-hybrid vehicle using fuzzy logic. In: IEEE Industry Applications Magazine (2000)

    Google Scholar 

  4. Sivertsson, M., Sundström, C., Eriksson, L.: Adaptive control of a hybrid powertrain with map-based ECMS. In: IFAC World Congress (2011)

    Google Scholar 

  5. Foellinger, O.: Optimale Regelung und Steuerung. Oldenbourg (1994). ISBN: 3486231162

    Google Scholar 

  6. Sutton, R.: Reinforcement Learning: An Introduction, 2nd edn. MIT Press, Cambridge (2018)

    Google Scholar 

  7. Kirschbaum, F., Back, M., Hart, M.: Determination of the fuel-optimal trajectory for a vehicle along a known route. IFAC Proc. Vol. 35(1), 235–239 (2002)

    Article  Google Scholar 

  8. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-dynamic programming (1996). ISBN: 1886529108

    Google Scholar 

  9. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. CoRR, abs/1509.02971 (2015)

    Google Scholar 

  10. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe Reinforcement Learning via Shielding, CoRR, abs/1708.08611 (2017)

    Google Scholar 

  11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  12. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  13. Mnih, V., et al.: Playing Atari with deep reinforcement learning. In: NIPS Deep Learning Workshop (2013)

    Google Scholar 

  14. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deterministic policy gradient algorithms. In: Proceedings of the 31st International Conference on Machine Learning (ICML 2014). Hrsg. von Tony Jebara und Eric P. Xing. JMLR Workshop und Conference Proceedings, pp. 387–395 (2014)

    Google Scholar 

  15. Liessner, R., Dietermann, A., Bäker, B., Lüpkes, K.: Generation of replacement vehicle speed cycles based on extensive customer data by means of Markov models and threshold accepting. SAE Int. J. Altern. Powertrains 6(1), 165–173 (2017)

    Article  Google Scholar 

  16. Liessner, R., Dietermann, A., Bäker, B., Lüpkes, K.: Derivation of real-world driving cycles corresponding to traffic situation and driving style on the basis of Markov models and cluster analyses. In: 6th Conference on Hybrid and Electric Vehicles, (HEVC 2016) (2016)

    Google Scholar 

  17. Onori, S., Serrao, L., Rizzoni, G.: Hybrid Electric Vehicles: Energy Management Strategies. Springer, London (2016)

    Book  Google Scholar 

  18. Helbing, M., Bäker, B., Schiffer, S.: Total vehicle concept design using computational intelligence. In: 6th Conference on Future Automotive Technology, Fürstenfeldbruck (2017)

    Google Scholar 

  19. Pillas, J.: Modellbasierte Optimierung dynamischer Fahrmanöver mittels Prüfständen, Dissertation, Technischen Universität Darmstadt (2017)

    Google Scholar 

  20. Engelhardt, T.: Derating-Strategien für elektrisch angetriebene Sportwagen, Wissenschaftliche Reihe Fahrzeugtchnik Universität Stuttgart (2017)

    Google Scholar 

  21. Wei, L.: Introduction to Hybrid Vehicle System Modeling and Control. Wiley, Hoboken (2013). ISBN 978-1-118-30840-0

    Google Scholar 

  22. Duan, Y.: Benchmarking deep reinforcement learning for continuous control. In: Proceedings of the 33rd International Conference on Machine Learning (ICML) (2016)

    Google Scholar 

  23. Plappert, M., et al.: Parameter Space Noise for Exploration, CoRR, abs/1706.01905 (2017)

    Google Scholar 

  24. Kingma, D., Ba, J.: Adam: a method for stochastic optimization, CoRR, abs/1412.6980 (2014)

    Google Scholar 

  25. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier networks. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. JMLR W and CP Volume, vol. 15, pp. 315–323 (2011)

    Google Scholar 

  26. Uhlenbeck, G., Ornstein, L.: On the theory of the brownian motion. Phys. Rev. 36(5), 823 (1930)

    Article  Google Scholar 

  27. Liessner, R., Dietermann, A., Schroer C., Bäker, B.: Deep reinforcement learning for advanced energy management of hybrid electric vehicles. In: Proceedings of the 10th International Conference on Agents and Artificial Intelligence - (Volume 2) (2018)

    Google Scholar 

  28. Wu, Y., Mansimov, E., Liao, S., Grosse, R., Ba, J.: Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation, CoRR, abs/1708.05144 (2017)

    Google Scholar 

  29. Mnih, V., et al.: Asynchronous Methods for Deep Reinforcement Learning, CoRR, abs/1602.01783 (2016)

    Google Scholar 

  30. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy Optimization Algorithms, CoRR, abs/1707.06347 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Liessner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liessner, R., Dietermann, A.M., Bäker, B. (2019). Safe Deep Reinforcement Learning Hybrid Electric Vehicle Energy Management. In: van den Herik, J., Rocha, A. (eds) Agents and Artificial Intelligence. ICAART 2018. Lecture Notes in Computer Science(), vol 11352. Springer, Cham. https://doi.org/10.1007/978-3-030-05453-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05453-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05452-6

  • Online ISBN: 978-3-030-05453-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics