Skip to main content

Theoretical Study of Self-organized Phase Transitions in Microblogging Social Networks

  • Conference paper
  • First Online:
Complex Networks and Their Applications VII (COMPLEX NETWORKS 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 813))

Included in the following conference series:

  • 2489 Accesses

Abstract

A simple sociophysical model is proposed to describe the transition between a chaotic and a coherent state of a microblogging social network. The model is based on the equations of evolution of the order parameter, the conjugated field, and the control parameter. The self-consistent evolution of the networks is presented by equations in which the correlation function between the incoming information and the subsequent change of the number of microposts plays the role of the order parameter; the conjugate field is equal to the existing information; and the control parameter is given by the number of strategically oriented users. Analysis of the adiabatic approximation shows that the second-order phase transition, which means following a definite strategy by the network users, occurs when their initial number exceeds a critical value equal to the geometric mean of the total and critical number of users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Savoiu, G.: Econophysics. Background and Applications in Economics, Finance, and Sociophysics. Elsevier, Amsterdam (2013)

    Google Scholar 

  2. Schweitzer, F.: Sociophysics. Phys. Today 71, 41–46 (2018)

    Article  Google Scholar 

  3. Price, D.: Networks of scientific papers. Science 149, 510–515 (1965)

    Article  Google Scholar 

  4. Barabasi, A.-L., Rreka, A.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  5. Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)

    Google Scholar 

  6. Tadic, B., Dankulov, M., Melnikc, R.: Mechanisms of self-organized criticality in social processes of knowledge creation. Phys. Rev. E 96, 032307 (2017)

    Google Scholar 

  7. Tadic, B., Gligorijevic, V., Mitrovic, M., Suvakov, M.: Co-evolutionary mechanisms of emotional bursts in online social dynamics and networks. Entropy 15, 5084–5120 (2013)

    Article  Google Scholar 

  8. Butts, C.T.: The complexity of social networks: theoretical and empirical findings. Soc. Netw. 23, 31–72 (2001)

    Article  Google Scholar 

  9. Skvoretz, J.: Complexity theory and models for social networks. Complexity 8, 47–55 (2003)

    Article  MathSciNet  Google Scholar 

  10. Everett, M.G.: Role similarity and complexity in social networks. Soc. Netw. 7, 353–359 (1985)

    Article  MathSciNet  Google Scholar 

  11. Ebel, H., Davidsen, J., Bornholdt, S.: Dynamics of social networks. Complexity 8, 24–27 (2002)

    Article  MathSciNet  Google Scholar 

  12. Bocaletti, S., Latora, V., Moreno, Y., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  13. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F. Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275 (2008)

    Google Scholar 

  14. Fronczak, P., Fronczak, A., Holyst, J.A.: Phase transitions in social networks. Eur. Phys. 59, 133–139 (2007)

    Article  Google Scholar 

  15. Li, L., Scaglione, A, Swami, A., Zhao, Q.: Phase transition in opinion diffusion in social networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3073–3076 (2012)

    Google Scholar 

  16. Floria, L.M., Gracia-Lazaro, C., Moreno, Y.: Social network reciprocity as a phase transition in evolutionary cooperation. Phys. Rev. E 79, (2009)

    Google Scholar 

  17. Perc, M.: Phase transitions in model of human cooperation. Phys. Lett. A 380, 2803–2808 (2016)

    Article  Google Scholar 

  18. Clark, L.W., Feng, L., Chin, C.: Universal soace-time scaling symmetry in the dynamics of bosons across a quantum phase transition. Science 354, 606–610 (2016)

    Article  MathSciNet  Google Scholar 

  19. Olemskoi, A.I., Khomenko, A.V., Kharchenko, D.O.: Self-organized criticality within fractional Lorenz scheme. Phys. A 323, 263–293 (2003)

    Article  MathSciNet  Google Scholar 

  20. Olemskoi, A.I., Kharchenko, D.O.: Kinetics of phase transitions with singular multiplicative noise. Phys. Solid State 42, 532–538 (2000)

    Article  Google Scholar 

  21. Olemskoi, A.I., Khomenko, A.V.: Three-parameter kinetics of a phase transition. J. Theor. Exp. Phys. 81, 1180–1192 (1996)

    Google Scholar 

  22. Olemskoi, A.I., Khomenko, A.V., Knyaz, A.I.: Phase transitions induced by noise cross-correlations. Phys. Rev. E 71, 041101 (2005)

    Google Scholar 

  23. Pogrebnjak, A.D., Bagdasaryan, A.A., Pshyk, A., Dyadyura, K.: Adaptive multicomponentnanocomposite coatings in surface engineering. Phys. Uspekhi 60, 586–607 (2017)

    Article  Google Scholar 

  24. Uddin, M.M., Imran, M., Sajjad, H.: Understanding Types of Users on Twitter. In: 6th ASE International Conference in Social Computing (2014)

    Google Scholar 

  25. Atkins, P.W.: The elements of physical chemistry. Oxford University Press, Oxford (1993)

    Google Scholar 

  26. Risken, H.: The Fokker–Planck Equation: Methods of Solutions and Applications. Springer, Berlin (1984)

    Google Scholar 

  27. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  28. Tsukanova, O.A., Vishnyakova, E.P., Maltseva, S.V.: Model-based monitoring and analysis of the network community dynamics in a textured state space. In: 16th IEEE Conference on Business Informatics, pp. 44–49 (2014)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (grant 16-07-01027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Dmitriev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dmitriev, A., Maltseva, S., Tsukanova, O., Dmitriev, V. (2019). Theoretical Study of Self-organized Phase Transitions in Microblogging Social Networks. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 813. Springer, Cham. https://doi.org/10.1007/978-3-030-05414-4_19

Download citation

Publish with us

Policies and ethics