Skip to main content

Multi-Net: A Scalable Multiplex Network Embedding Framework

  • Conference paper
  • First Online:
Complex Networks and Their Applications VII (COMPLEX NETWORKS 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 813))

Included in the following conference series:

Abstract

Representation learning of networks has witnessed significant progress in recent times. Such representations have been effectively used for classic network-based machine learning tasks like node classification, link prediction, and network alignment. However, very few methods focus on capturing representations for multiplex or multilayer networks, which are more accurate and detailed representations of complex networks. In this work, we propose Multi-Net a fast and scalable embedding technique for multiplex networks. Multi-Net, effectively maps nodes to a lower-dimensional space while preserving its neighborhood properties across all the layers. We utilize four random walk strategies in our unified network embedding model, thus making our approach more robust than existing state-of-the-art models. We demonstrate superior performance of Multi-Net on four real-world datasets from different domains. In particular, we highlight the uniqueness of Multi-Net by leveraging it for the complex task of network reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the fourth ACM international conference on Web search and data mining, pp. 635–644. ACM, New York (2011)

    Google Scholar 

  2. Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of complex networks. Science 353(6295), 163–166 (2016)

    Article  Google Scholar 

  3. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. Social Network Data Analytics, pp. 115–148. Springer, Boston (2011)

    Chapter  Google Scholar 

  4. Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C.I., Gómez-Gardenes, J., Romance, M., Sendina-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)

    Article  MathSciNet  Google Scholar 

  5. Chen, B.L., Hall, D.H., Chklovskii, D.B.: Wiring optimization can relate neuronal structure and function. Proc. Natl. Acad. Sci. 103(12), 4723–4728 (2006)

    Article  Google Scholar 

  6. De Domenico, M., Lima, A., Mougel, P., Musolesi, M.: The anatomy of a scientific rumor. Sci. Rep. 3, 2980 (2013)

    Article  Google Scholar 

  7. De Domenico, M., Porter, M.A., Arenas, A.: Muxviz: a tool for multilayer analysis and visualization of networks. J. Complex Netw. 3(2), 159–176 (2015)

    Article  Google Scholar 

  8. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM, New York (2016)

    Google Scholar 

  9. Guo, Q., Cozzo, E., Zheng, Z., Moreno, Y.: Levy random walks on multiplex networks. Sci. Rep. 6, 37,641 (2016)

    Article  Google Scholar 

  10. Kramer, M., Dutkowski, J., Yu, M., Bafna, V., Ideker, T.: Inferring gene ontologies from pairwise similarity data. Bioinformatics 30(12), i34–i42 (2014). https://doi.org/10.1093/bioinformatics/btu282

    Article  Google Scholar 

  11. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)

    Google Scholar 

  12. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1361–1370. ACM, New York (2010)

    Google Scholar 

  13. Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In: Advances in Neural Information Processing Systems, pp. 539–547 (2012)

    Google Scholar 

  14. Liu, W., Lü, L.: Link prediction based on local random walk. EPL (Europhys. Lett.) 89(5), 58007 (2010)

    Article  Google Scholar 

  15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, vol. 26, pp. 3111–3119. Curran Associates, Inc. (2013)

    Google Scholar 

  16. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM, New York (2014)

    Google Scholar 

  17. Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10(2), 191–218 (2006)

    Article  MathSciNet  Google Scholar 

  18. Rossi, R.A., Gallagher, B., Neville, J., Henderson, K.: Modeling dynamic behavior in large evolving graphs. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 667–676. ACM, New York (2013)

    Google Scholar 

  19. Solé-Ribalta, A., De Domenico, M., Gómez, S., Arenas, A.: Random walk centrality in interconnected multilayer networks. Phys. D Nonlinear Phenom. 323, 73–79 (2016)

    Article  MathSciNet  Google Scholar 

  20. Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: Biogrid: a general repository for interaction datasets. Nucleic Acids Res. 34(suppl–1), D535–D539 (2006)

    Article  Google Scholar 

  21. Zhang, H., Qiu, L., Yi, L., Song, Y.: In: Scalable multiplex network embedding. In: IJCAI, pp. 3082–3088(2018)

    Google Scholar 

  22. Zitnik, M., Leskovec, J.: Predicting multicellular function through multi-layer tissue networks. Bioinformatics 33(14), i190–i198 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunkumar Bagavathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bagavathi, A., Krishnan, S. (2019). Multi-Net: A Scalable Multiplex Network Embedding Framework. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 813. Springer, Cham. https://doi.org/10.1007/978-3-030-05414-4_10

Download citation

Publish with us

Policies and ethics