Skip to main content

Computational Aspects of Fault Location and Resilience Problems for Interdependent Infrastructure Networks

  • Conference paper
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 812))

Abstract

Motivated by applications in diagnosing failures in complex infrastructure networks, we consider the configuration sequence completion problem (CSC) for networked systems. The goal of the CSC problem is to choose values for unknown entries in a specified sequence of configurations of a system so that the resulting sequence represents a valid trajectory of the system. This problem generalizes some known decision problems for dynamical systems. We present efficient algorithms for some versions of the CSC problem and computational intractability results for other versions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Configurations with no predecessors are called Garden of Eden configurations.

  2. 2.

    See [7] for the definition of treewidth.

  3. 3.

    The definition of r-symmetric functions appears in Sect. 2.

  4. 4.

    Haimes and Jiang [16] propose a dynamical model similar to the one discussed here but do not discuss the computational aspects which is crucial.

  5. 5.

    The value of the k-threshold function is 1 iff at least k of the inputs are 1 [10].

  6. 6.

    The instantaneous description of a 1-tape machine consists of the state of the TM, contents of the tape and the head position.

References

  1. Amin, M.: Toward secure and resilient interdependent infrastructures. J. Infrastruct. Syst. 8(3), 67–75 (2002)

    Google Scholar 

  2. Banerjee, J., Basu, K., Sen, A.: Analysing robustness in intra-dependent and inter-dependent networks using a new model of interdependency. Int. J. Crit. Infrastruct. 14(2), 156–181 (2018)

    Google Scholar 

  3. Banerjee, J., Das, A., Sen, A.: A survey of interdependency models for critical infrastructure networks. arXiv:1702.05407 (2017)

  4. Barrett, C., Eubank, S., Kumar, V.A., Marathe, M.V.: Understanding large scale social and infrastructure networks: a simulation based approach. SIAM News 37(4), 1–5 (2004)

    Google Scholar 

  5. Barrett, C., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Modeling and analyzing social network dynamics using stochastic discrete graphical dynamical systems. Theoret. Comput. Sci. 412(30), 3932–3946 (2011)

    Google Scholar 

  6. Barrett, C., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E., Thakur, M.: Predecessor existence problems for finite discrete dynamical systems. Theoret. Comput. Sci. 386(1), 3–37 (2007)

    Google Scholar 

  7. Bodlaender, H.: Treewidth: algorithmic techniques and results. In: Proceedings 22nd MFCS, pp. 29–36 (1997)

    Google Scholar 

  8. Brummitt, C.D., D’Souza, R.M., Leicht, E.A.: Suppressing cascades of load in interdependent networks. Proc. Nat. Acad. Sci. 109(12), E680–E689 (2012)

    Google Scholar 

  9. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464 (2010)

    Google Scholar 

  10. Crama, Y., Hammer, P.: Boolean Functions: Theory, Algorithms, and Applications. Cambridge University Press, New York, NY (2011)

    Google Scholar 

  11. Dobson, I., Chen, J., Thorp, J., Carreras, B.A., Newman, D.E.: Examining criticality of blackouts in power system models with cascading events. In: Proceedings 35th Annual Hawaii International Conference on System Sciences (HICSS) (2002). 10 pages

    Google Scholar 

  12. Galbusera, L., Giannopoulos, G., Argyroudis, S., Kakderi, K.: A Boolean networks approach to modeling and resilience analysis of interdependent critical infrastructures. In: Computer-Aided Civil and Infrastructure Engineering, pp. 1–15 (2018)

    Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman & Co., San Francisco (1979)

    Google Scholar 

  14. Green, F.: NP-complete problems in cellular automata. Complex Syst. 1(3), 453–474 (1987)

    Google Scholar 

  15. Haimes, Y.Y., Horowitz, B.M., Lambert, J.H., Santos, J.R., Lian, C., Crowther, K.G.: Inoperability input-output model for interdependent infrastructure sectors I: theory and methodology. J. Infrastruct. Syst. 11(2), 67–79 (2005)

    Google Scholar 

  16. Haimes, Y.Y., Jiang, P.: Leontief-based model of risk in complex interconnected infrastructures. J. Infrastruct. Syst. 7(1), 1–12 (2001)

    Google Scholar 

  17. Horowitz, S.H., Phadke, A.G.: Boosting immunity to blackouts. IEEE Power Energy Mag 99(5), 47–53 (2003)

    Google Scholar 

  18. Kawachi, A., Ogihara, M., Uchizawa, K.: Generalized predecessor existence problems for boolean finite dynamical systems. In: 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017), pp. 8:1–8:13 (2017)

    Google Scholar 

  19. Little, R.G.: Controlling cascading failure: understanding the vulnerabilities of interconnected infrastructures. J. Urban Technol. 9(1), 109–123 (2002)

    Google Scholar 

  20. Parandehgheibi, M., Modiano, E.: Robustness of interdependent networks: the case of communication networks and the power grid. In: Global Communications Conference (GLOBECOM), 2013 IEEE, pp. 2164–2169. IEEE (2013)

    Google Scholar 

  21. Phadke, A., Thorp, J.S.: Expose hidden failures to prevent cascading outages [in power systems]. IEEE Comput. Appl. Power 9(3), 20–23 (1996)

    Google Scholar 

  22. Rinaldi, S.M., Peerenboom, J.P., Kelly, T.K.: Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst. 21(6), 11–25 (2001)

    Google Scholar 

  23. Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S., Setola, R.: Modelling interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastruct. 4(1–2), 63–79 (2008)

    Google Scholar 

  24. Shao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Cascade of failures in coupled network systems with multiple support-dependence relations. Phys. Rev. E 83(3), 036,116 (2011)

    Google Scholar 

  25. Tamronglak, S., Horowitz, S., Phadke, A., Thorp, J.: Anatomy of power system blackouts: preventive relaying strategies. IEEE Trans. Power Deliv. 11(2), 708–715 (1996)

    Google Scholar 

  26. Vespignani, A.: The fragility of interdependency. Nature 464, 984–985 (2010)

    Google Scholar 

  27. Wallace, W.A., Mendonça, D., Lee, E., Mitchell, J., Chow, J.: Managing disruptions to critical interdependent infrastructures in the context of the 2001 World Trade Center attack. In: Impacts of and Human Response to the September 11, 2001 Disasters: What Research Tells Us (2001)

    Google Scholar 

  28. Wang, W., Yang, S., Hu, F., Stanley, H.E., He, S., Shi, M.: An approach for cascading effects within critical infrastructure systems. Phys. A Stat. Mech. Appl. 510, 164–177 (2018)

    Google Scholar 

Download references

Acknowledgments

We thank Professors Arun Phadke and late Jim Thorp (Virginia Tech) for discussions related to problems studied in this paper. We thank the referees for providing helpful comments. This work has been partially supported by DARPA Cooperative Agreement D17AC00003 (NGS2), DTRA CNIMS (Contract HDTRA1-11-D-0016-0001), NSF DIBBS Grant ACI-1443054, NSF BIG DATA Grant IIS-1633028 and NSF EAGER Grant CMMI-1745207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Ravi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E. (2019). Computational Aspects of Fault Location and Resilience Problems for Interdependent Infrastructure Networks. In: Aiello, L., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P., Rocha, L. (eds) Complex Networks and Their Applications VII. COMPLEX NETWORKS 2018. Studies in Computational Intelligence, vol 812. Springer, Cham. https://doi.org/10.1007/978-3-030-05411-3_70

Download citation

Publish with us

Policies and ethics