Skip to main content

Reliable Natural-Fibre Augmented Biodegraded Polymer Composites

  • Chapter
  • First Online:
Sustainable Polymer Composites and Nanocomposites

Abstract

The environment and enduring issues have perceived innovative achievements in the area of materials science for the discovery of biocomposites or most favourably biodegraded polymer composites (BPC’s). BPC’s are composite materials formed by the blend of matrix or resin with natural fibres. Natural fibres offer several advantages over synthetic fibres, which make them excellent candidates in various applications. Besides having various advantages they lack in issues like resin compatibility and water absorption. This article discusses various pros and cons of BPC’s along with their source, composition, structure, manufacturing techniques, as well as mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics. Compos Sci Technol 63:1259–1264

    Article  CAS  Google Scholar 

  2. Malkapuram R, Kumar V, Yuvraj SN (2008) Recent development in natural fibre reinforced polypropylene composites. J Reinf Plast Compos 28:1169–1189

    Article  Google Scholar 

  3. Li X, Tabil LG, Panigrahi S, Crerar WJ (2009) The influence of fibre content on properties of injection molded flax fibre-HDPE biocomposites. Can Biosyst Eng 08–148:1–10

    Google Scholar 

  4. Holbery J, Houston D (2006) Natural-fibre-reinforced polymer composites in automotive applications. JOM (TMS) 58(11):80–86

    Article  CAS  Google Scholar 

  5. Ahmad I, Baharum A, Abdullah I (2006) Effect of extrusion rate and fibre loading on mechanical properties of twaron fibre-thermoplastic natural rubber (TPNR) composites. J Reinf Plast Compos 25:957–965

    Article  CAS  Google Scholar 

  6. Pickering K (2008) Properties and performance of natural-fibre composites, 1st ed. Woodhead Publishing

    Google Scholar 

  7. Hajnalka H, Racz I, Anandjiwala RD (2008) Development of HEMP fibre reinforced polypropylene composites. J Thermoplast Compos Mater 21:165–174

    Article  Google Scholar 

  8. Ahmad I, Baharum A, Abdullah I (2006) Effect of extrusion rate and fibre loading on mechanical properties of twaron fibre-thermoplastic natural rubber (TPNR) composites. J Reinf Plast Compos 25:957–965

    Article  CAS  Google Scholar 

  9. Nabi SD, Jog JP (1999) Natural fibre polymer composites: a review. Adv Polym Technol 18:351–363

    Google Scholar 

  10. Pickering KL (2008) Properties and performance of natural-fibre composites CRC Press, Florida

    Google Scholar 

  11. Odian G (2004) Principles of polymerization, 4th edn. Wiley, New Jersey

    Book  Google Scholar 

  12. Cardon LK, Ragaert KJ, Koster RP (2010) Design and fabrication of biocomposites. Woodhead Publishing, Biomedical Composites, pp 25–43

    Google Scholar 

  13. Hill CAS ( 2006) Chemical modification of wood (I): acetic anhydride modification 3.1. In: Cas H (ed) Wood modification: chemical, thermal and other processes. Wiley, New Jersey, pp 45–76

    Google Scholar 

  14. Li X, Panigrahi S, Tabil LG (2009) A study on flax fibre-reinforced polyethylene biocomposites. Appl Eng Agr 25:525–531

    Article  CAS  Google Scholar 

  15. Tripathy S, Mishra S, Nayak S (1999) Novel, low-cost jute-polyester composites. Part 1: processing, mechanical properties, and SEM analysis. Polym Compos 20(1):62–71

    Google Scholar 

  16. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fibre for use in natural fibre-reinforced composites: a review. J Polym Env 15(1):25–33

    Article  Google Scholar 

  17. Panigrahy BS, Rana A, Chang P, Panigrahi S (2006) Overview of flax fibre reinforced thermoplastic composites. Can Biosyst Eng J 06–165:1–12

    Google Scholar 

  18. Belgacem MN, Gandini A (2004) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interfaces 12(1–2):41–75

    Google Scholar 

  19. Wang L, Duan Y, Zhang Y, Huang R, Dong Y, Huang C, Zhou B (2016) Surface modification of poly-(p-phenylene terephthalamide) pulp with a silane containing isocyanate group for silicone composites reinforcement 21(6):505–511

    Google Scholar 

  20. Shah BL, Selke SE, Walters MB, Heiden PA (2008) Effects of wood flour and chitosan on mechanical, chemical, and thermal properties of polylactide. Polym Compos 29(6):655–663

    Article  CAS  Google Scholar 

  21. Sun-M, Lai F-CY, Yeh Wang, Hsun-C, Chan, Hsiao-F, Shen (2003) Comparative study of maleated polyolefins as compatibilizers for polyethylene/wood flour composites. Appl Polym Sci 87:487–496

    Google Scholar 

  22. Abdelmouleh M, Boufi S, Salah AB, Belgacem MN, Gandini A (2002) Interaction of silane coupling agents with cellulose. Langmuir 18:3203–3208

    Article  CAS  Google Scholar 

  23. Gomez JA (1989) Oligomeric titanates as coupling agents for fibre-reinforced composites. Doctoral Dissertations, University of Connecticut. http://opencommons.uconn.edu/dissertations/AAI9023893

  24. Vishnyakov LP, Moroz VP, Pisarenko VA, Samelyuk AV (2007) Composites with zirconium matrix reinforced with boron and silicon carbide fibres. Powder Metall Metal Ceram 46(1–2):38–42

    Article  CAS  Google Scholar 

  25. Oh JT, Hong JH, Ahn Y, Kim H (2012) Reliability improvement of hemp based bio-composite by surface modification. Fibres Polym 13(6):735–739

    Article  CAS  Google Scholar 

  26. Natrajan S, Moses JJ (2012) Surface modification of polyester fabric using polyvinyl alcohol in alkaline. Ind J Fibre Tex Res 37:287–291

    Google Scholar 

  27. Faruk Omar, Bledzki Andrzej K, Fink Hans-Peter, Sain Mohini (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  CAS  Google Scholar 

  28. Lee BH, Kim HS, Lee S, Kim HJ, Dorgan JR (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Tech 69:2573–2579

    Article  CAS  Google Scholar 

  29. Pothan LA, Thomas S (2003) Polarity parameters and dynamic mechanical behavior of chemically modified banana fiber reinforced polyester composites. Compos Sci Tech 63:1231–1240

    Article  CAS  Google Scholar 

  30. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review, compos: part A 41:806–819

    Google Scholar 

  31. Dong S, Saphieha S, Schreiber HP (1992) Rheological properties of corona modified cellulose/ polyethylene composites. Polym Eng Sci 32(22):6

    Google Scholar 

  32. Lee KY, Delille A, Bismarck A (2011) Greener surface treatments of natural fibres for the production of renewable composite materials cellulose fibres: Bio- and nano-polymer composites. In: Kalia S, Kaith BS, Kaur I (eds) Springer, Berlin Heidelberg, pp 155–178

    Google Scholar 

  33. Nguyen MH, Kim BS, Ha JR, Song JI (2011) Effect of plasma and NaOH treatment for rice husk/PP composites. Adv Compos Mater 20(5):435–442

    Article  CAS  Google Scholar 

  34. Yousif BF, Ku H (2012) Suitability of using coir fibre/polymeric composite for the design of liquid storage tanks. Mater Des 36:847–853

    Article  CAS  Google Scholar 

  35. chanakan A, Charoenvaisarocha, Jongjit H, Joseph K (2009) Materials and mechanical properties of pretreated coir-based green composites. Compos B 40:633–637

    Google Scholar 

  36. Athijayamani A, Thiruchitrambalam M, Natarajan U, Pazhanivel B (2009) Effect of moisture absorption on the mechanical properties of randomly oriented natural fibres/polyester hybrid composite. Mat Sci Eng A 517:344–353

    Article  Google Scholar 

  37. Siddiquee (2014) Investigation of an optimum method of biodegradation process for jute polymer composites. Am J Eng Res 3(1):200–206

    Google Scholar 

  38. Shinji O (2008) Shinji Ochi, Mechanical properties of kenaf fibres and kenaf/PLA composites. Mech Mat 40(4–5):446–452

    Google Scholar 

  39. Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Comp Sci Tech 63:1317–1324

    Article  CAS  Google Scholar 

  40. Petinakis E, Yu L, Simon G, Dean K (2013) Natural fibre bio-composites incorporating poly(lactic acid). In: Masuelli MA (ed) Fiber reinforced polymers—the technology applied for concrete repair, Web of Science, pp 41–59

    Google Scholar 

  41. Hu R, Lim JK (2007) Fabrication and mechanical properties of completely biodegradable hemp fibre reinforcd polylactic acid composites. J Compos Mat 41:1655–1669

    Article  CAS  Google Scholar 

  42. Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Comp Part A 39(5):875–886

    Article  Google Scholar 

  43. Singh S, Mohanty AK (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Comp Sci Tech 67:1753–1763

    Article  CAS  Google Scholar 

  44. Chen B, Evans JRG (2005) Thermoplastic starch–clay nanocomposites and their characteristics. Carbohydr Polym 61:455–463

    Article  CAS  Google Scholar 

  45. Carrado KA, Xu L, Seifert S, Csencsits R, Bloomquist CAA (2000) Polymer–clay nanocomposites derived from polymer-silicate gels. In: Pinnavaia TJ, Beall G (eds) Polymer–clay nanocomposites. Wiley, Chichester, pp 54–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Payal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Payal, R. (2019). Reliable Natural-Fibre Augmented Biodegraded Polymer Composites. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_33

Download citation

Publish with us

Policies and ethics