Skip to main content

Extraction of Cellulose Nanofibers and Their Eco-friendly Polymer Composites

  • Chapter
  • First Online:
Sustainable Polymer Composites and Nanocomposites

Abstract

Polymer-based materials are an important and promising area of research exhibiting strong developments (Sadeghi et al. in J Mol Liq 263:282–287, 2018, [1; Rezakazemi et al. in Progr Energy Combust Sci 66:1–41, 2018 [2]). They play a prominent role in the modern civilization and find application in different industries related to electrical and electronic equipment, chemicals, automotive, spacecraft, energy storage in batteries and supercapacitors and medical to cite a few.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

%:

Percentage

[BMIM]Cl:

1-butyl-3-methylimidazolium chloride

[BMIM]HSO4:

1-butyl-3-methylimidazolium hydrogen sulfate

[EMIM][OAc]:

1-ethyl-3-methyllimidazolium acetate

[SBMIM]HSO4:

1-(4-sulfobutyl)-3-methylimidazolium hydrogen sulfate

AFM:

Atomic force microscopy

AGU:

Anhydroglucose unit

ANC:

Amorphous nanocellulose

BC:

Bacterial cellulose

cm:

Centimeter

CNC:

Cellulose nanocrystal

CNF:

Cellulose nanofibrils

CNM:

Cellulose nanomaterials

CNY:

Cellulose nanoyarn

CrI :

Crystallinity index

D:

Apparent crystallite size

DSC:

Differential scanning calorimetry

FTIR:

Fourier Transform

HEBM:

High-energy bead milling

kg/day:

Kilogram per day

nm:

Nanometer

PLA:

Polylactide

SEM:

Scanning electron microscope

TAPPI:

Technical Association of the Pulp and Paper Industry

TBAA:

Tetrabutylammonium acetate

TEM:

Transmission electron microscope

TEMPO:

2,2,6,6-tetramethyl-1-piperidinyloxy

TGA:

Thermogravimetric analysis

Tmax:

Melting point temperature

XRD:

X-ray Diffraction

λ:

X-ray wavelength

References

  1. Sadeghi A et al (2018) Predictive construction of phase diagram of ternary solutions containing polymer/solvent/nonsolvent using modified Flory-Huggins model. J Mol Liq 263:282–287

    Article  CAS  Google Scholar 

  2. Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41

    Article  Google Scholar 

  3. Kumode MMN et al (2017) Microfibrillated nanocellulose from balsa tree as potential reinforcement in the preparation of ‘green’composites with castor seed cake. J Clean Prod 149:1157–1163

    Article  CAS  Google Scholar 

  4. Kargarzadeh H et al (2017) Handbook of nanocellulose and cellulose nanocomposites. Wiley Online Library

    Google Scholar 

  5. Jawaid M, Boufi S, Abdul KH et al (2017) Cellulose-reinforced nanofiber composites. Elsevier

    Google Scholar 

  6. Trache D (2017) Microcrystalline cellulose and related polymer somposites: synthesis, characterization and properties. In: Handbook of composites from renewable materials, Thakur VK, Kumari Thakur M, Kessler MR et al (eds). Scrivener Publishing LLC, pp 61–92

    Google Scholar 

  7. Kargarzadeh H et al (2017) Recent developments on nanocellulose reinforced polymer nanocomposite: A review polymer

    Google Scholar 

  8. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci, Part B: Polym Phys 52(12):791–806

    Article  CAS  Google Scholar 

  9. Trache D et al (2016) Microcrystalline cellulose: isolation, characterization and bio-composites application—A review. Int J Biol Macromol 93(Pt A):789–804

    Article  CAS  Google Scholar 

  10. Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—An overview. Prog Polym Sci 34(9):982–1021

    Article  CAS  Google Scholar 

  11. Moon RJ et al (2011) Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  Google Scholar 

  12. Haafiz MM et al (2015) Bionanocomposite based on cellulose nanowhisker from oil palm biomass-filled poly (lactic acid). Polym Test 48:133–139

    Article  CAS  Google Scholar 

  13. Trache D et al (2017) Recent progress in cellulose nanocrystals: Sources and production. Nanoscale 9(5):1763–1786

    Article  CAS  Google Scholar 

  14. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25

    Article  CAS  Google Scholar 

  15. Oun AA, Rhim J-W (2016) Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohyd Polym 150:187–200

    Article  CAS  Google Scholar 

  16. Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37:20–28

    CAS  Google Scholar 

  17. Thakur VK (2015) Nanocellulose polymer nanocomposites: fundamentals and applications. Wiley

    Google Scholar 

  18. Qin X et al (2015) Tuning glass transition in polymer nanocomposites with functionalized cellulose nanocrystals through nanoconfinement. Nano Lett 15(10):6738–6744

    Article  CAS  Google Scholar 

  19. Boujemaoui A et al (2015) Preparation and characterization of functionalized cellulose nanocrystals. Carbohyd Polym 115:457–464

    Article  CAS  Google Scholar 

  20. Kim J-H et al (2015) Review of nanocellulose for sustainable future materials. Int J Prec Eng Manufact-Green Technol 2(2):197–213

    Article  Google Scholar 

  21. Ng H-M et al (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B Eng 75:176–200

    Article  CAS  Google Scholar 

  22. Xu X et al (2014) Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly (ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures. Macromolecules 47(10):3409–3416

    Article  CAS  Google Scholar 

  23. Singla R et al (2016) Nanocellulose and nanocomposites. In: Nanoscale materials in targeted drug delivery, theragnosis and tissue regeneration, Springer, pp 103–125

    Google Scholar 

  24. Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. JOM 68(9):2383–2394

    Article  CAS  Google Scholar 

  25. Vazquez A et al (2015) Extraction and production of cellulose nanofibers. In: Handbook of polymer nanocomposites. Processing, performance and application. Springer, pp 81–118

    Google Scholar 

  26. Thakur VK (2015) Lignocellulosic polymer composites: processing, characterization, and properties. Wiley

    Google Scholar 

  27. Pandey J et al (2015) Handbook of polymer nanocomposites. Processing, performance and application. Springer

    Google Scholar 

  28. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polymer J 59:302–325

    Article  CAS  Google Scholar 

  29. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  30. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polym 2(4):728–765

    Article  CAS  Google Scholar 

  31. Borges J et al (2015) Cellulose-based liquid crystalline composite systems. In: Thakur VK (ed) Nanocellulose polymer nanocomposites: fundamentals and applications. Wiley-Scrivener, pp 215–235

    Google Scholar 

  32. Wertz J-L, Mercier JP, Bédué O (2010) Cellulose science and technology. CRC Press, Switzerland

    Book  Google Scholar 

  33. Postek MT et al (2013) Production and applications of cellulose. Tappi Press, Peachtree Corners

    Google Scholar 

  34. Klemm D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  35. Klemm D et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  36. Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6(14):7764–7779

    Article  CAS  Google Scholar 

  37. Wei H et al (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci: Nano 1(4):302–316

    CAS  Google Scholar 

  38. Heinze T (2016) Cellulose: structure and properties. In: Cellulose chemistry and properties: Fibers, nanocelluloses and advanced materials. Springer, pp 1–52

    Google Scholar 

  39. Trache D et al (2014) Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohyd Polym 104:223–230

    Article  CAS  Google Scholar 

  40. Gupta V et al (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Biores Technol 216:1066–1076

    Article  CAS  Google Scholar 

  41. Oksman K et al (2014) Handbook of green materials: Processing technologies, properties and applications (in 4 volumes), vol 5. World Scientific

    Google Scholar 

  42. ISO/TS80004–1 (2010) International organization for standardization. ISO technical specification ISO/TS80004-1, Nanotechnologies—Vocabulary—Part 1: Core terms

    Google Scholar 

  43. ISO/TS27687 (2008) International organization for standardization. ISO technical specification ISO/TS 27687, Nanotechnologies—Terminology and definitions for nano-objects-Nanoparticle, nanofiber and nanoplate

    Google Scholar 

  44. Brinchi L et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94(1):154–169

    Article  CAS  Google Scholar 

  45. Charreau H, Foresti ML, Vázquez A et al (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent patents on nanotechnology, 7(1), pp 56–80

    Google Scholar 

  46. TAPPI (2017) Standard terms and their definition for cellulose nanomaterial. WI 3021, http://www.tappi.org/content/hide/draft3.pdf. Accessed 01 Dec 2017

  47. Gama M, Gatenholm P, Klemm D et al (2012) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press

    Google Scholar 

  48. Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohyd Polym 146:148–165

    Article  CAS  Google Scholar 

  49. Dufresne A (2013) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter

    Google Scholar 

  50. Agbor VB et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    Article  CAS  Google Scholar 

  51. Trache D et al (2016) Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal Calorim 124(3):1485–1496

    Article  CAS  Google Scholar 

  52. Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sustain Energy Rev 41:402–412

    Article  CAS  Google Scholar 

  53. Jonoobi M et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellul 22(2):935–969

    Article  CAS  Google Scholar 

  54. Dufresne A, Belgacem MN (2013) Cellulose-reinforced composites: from micro-to nanoscale. Polímeros 23(3):277–286

    CAS  Google Scholar 

  55. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227

    Article  CAS  Google Scholar 

  56. Abdul Khalil H et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohyd Polym 99:649–665

    Article  CAS  Google Scholar 

  57. Lavoine N et al (2012) Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90(2):735–764

    Article  CAS  Google Scholar 

  58. Gama M, Dourado F, Bielecki S et al (2016) Bacterial nanocellulose: from biotechnology to bio-economy. Elsevier

    Google Scholar 

  59. Vasconcelos NF et al (2017) Bacterial cellulose nanocrystals produced under different hydrolysis conditions: properties and morphological features. Carbohyd Polym 155:425–431

    Article  CAS  Google Scholar 

  60. Campano C et al (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellul 23(1):57–91

    Article  CAS  Google Scholar 

  61. Anwar B, Bundjali B, Arcana IM (2015) Isolation of cellulose nanocrystals from bacterial cellulose produced from pineapple peel waste juice as culture medium. Procedia Chem 16:279–284

    Article  CAS  Google Scholar 

  62. George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45

    Article  CAS  Google Scholar 

  63. Kontturi E et al (2016) Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals. Angew Chem Int Ed 55(46):14455–14458

    Article  CAS  Google Scholar 

  64. Du H et al (2016) Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 1–19

    Google Scholar 

  65. Chen L et al (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem

    Google Scholar 

  66. Liu Y et al (2014) A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohyd Polym 110:415–422

    Article  CAS  Google Scholar 

  67. Tang L-R et al (2011) Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Biores Technol 102(23):10973–10977

    Article  CAS  Google Scholar 

  68. Anderson SR et al (2014) Enzymatic preparation of nanocrystalline and microcrystalline cellulose. TAPPI J, vol 13, pp 35–41

    Google Scholar 

  69. Xu Y et al (2013) Feasibility of nanocrystalline cellulose production by endoglucanase treatment of natural bast fibers. Ind Crops Prod 51:381–384

    Article  CAS  Google Scholar 

  70. Chen X et al (2012) Controlled enzymolysis preparation of nanocrystalline cellulose from pretreated cotton fibers. BioRes 7(3):4237–4248

    Google Scholar 

  71. Amin KNM et al (2015) Production of cellulose nanocrystals via a scalable mechanical method. RSC Adv 5(70):57133–57140

    Article  CAS  Google Scholar 

  72. Lazko J et al (2016) Acid-free extraction of cellulose type I nanocrystals using Brønsted acid-type ionic liquids. Nanocomposites 2(2):65–75

    Article  CAS  Google Scholar 

  73. Tan XY, Hamid SBA, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenerg 81:584–591

    Article  CAS  Google Scholar 

  74. Mao J et al (2015) Cellulose nanocrystals production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim] HSO4)–mediated hydrolysis. Carbohyd Polym 117:443–451

    Article  CAS  Google Scholar 

  75. Lazko J et al (2014) Well defined thermostable cellulose nanocrystals via two-step ionic liquid swelling-hydrolysis extraction. Cellulose 21(6):4195–4207

    Article  CAS  Google Scholar 

  76. Novo LP et al (2016) A study of the production of cellulose nanocrystals through subcritical water hydrolysis. Indus Crops Prod

    Google Scholar 

  77. Novo LP et al (2015) Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain Chem Eng 3(11):2839–2846

    Article  CAS  Google Scholar 

  78. Miller J (2015) Cellulose nanomaterials production-state of the industry.[cited 2017 05–12-2017]; Available from http://www.tappinano.org/media/1114/cellulose-nanomaterials-production-state-of-the-industry-dec-2015.pdf

  79. Sun B et al (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22(2):1135–1146

    Article  CAS  Google Scholar 

  80. Visanko M et al (2014) Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: Physicochemical characteristics and use as an oil—water stabilizer. Biomacromol 15(7):2769–2775

    Article  CAS  Google Scholar 

  81. Cao X et al (2012) Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohyd Polym 90(2):1075–1080

    Article  CAS  Google Scholar 

  82. Chowdhury ZZ, Hamid SBA (2016) Preparation and characterization of nanocrystalline cellulose using ultrasonication combined with a microwave-assisted pretreatment process. BioRes 11(2):3397–3415

    CAS  Google Scholar 

  83. Tang Y et al (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21(1):335–346

    Article  CAS  Google Scholar 

  84. Lu Z et al (2013) Preparation, characterization and optimization of nanocellulose whiskers by simultaneously ultrasonic wave and microwave assisted. Biores Technol 146:82–88

    Article  CAS  Google Scholar 

  85. Lee H et al (2018) Improved thermal stability of cellulose nanofibrils using low-concentration alkaline pretreatment. Carbohyd Polym 181:506–513

    Article  CAS  Google Scholar 

  86. Turbak AF, Snyder FW, Sandberg KR et al (1983) Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp (U S). ITT Rayonier Inc., Shelton, WA

    Google Scholar 

  87. Herrick FW et al (1983) Microfibrillated cellulose: Morphology and accessibility. J Appl Polym Sci: Appl Polym Symp (U S). ITT Rayonier Inc., Shelton, WA

    Google Scholar 

  88. Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellul 23(1):93–123

    Article  CAS  Google Scholar 

  89. Lee H, Sundaram J, Mani S et al (2017) Production of cellulose nanofibrils and their application to food: a review, in nanotechnology. Springer, pp 1–33

    Google Scholar 

  90. Rol F et al (2017) Pilot-Scale twin screw extrusion and chemical pretreatment as an energy-efficient method for the production of nanofibrillated cellulose at high solid content. ACS Sustain Chem Eng 5(8):6524–6531

    Article  CAS  Google Scholar 

  91. Yan H et al (2017) Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion. Food Hydrocolloids 72:127–135

    Article  CAS  Google Scholar 

  92. Sacui IA et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6(9):6127–6138

    Article  CAS  Google Scholar 

  93. Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotechniques

    Google Scholar 

  94. Ioelovich M (2013) Nanoparticles of amorphous cellulose and their properties. Am J Nanosci Nanotechnol 1(1):41–45

    Article  CAS  Google Scholar 

  95. Ioelovich M (2014) Peculiarities of cellulose nanoparticles. Tappi J 13(5):45–51

    CAS  Google Scholar 

  96. Quan S-L, Kang S-G, Chin I-J (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17(2):223–230

    Article  CAS  Google Scholar 

  97. Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J Biomater Nanobiotechnol 4(02):165

    Article  CAS  Google Scholar 

  98. Nascimento SA, Rezende CA (2018) Combined approaches to obtain cellulose nanocrystals, nanofibrils and fermentable sugars from elephant grass. Carbohyd Polym 180:38–45

    Article  CAS  Google Scholar 

  99. Frone AN et al (2017) Isolation of cellulose nanocrystals from plum seed shells, structural and morphological characterization. Mater Lett 194:160–163

    Article  CAS  Google Scholar 

  100. Wang Z et al (2017) Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohyd Polym 157:945–952

    Article  CAS  Google Scholar 

  101. Zhang K et al (2016) Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohyd Polym 138:237–243

    Article  CAS  Google Scholar 

  102. Yu H-Y et al (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem. Eng 4(5):2632–2643

    Article  CAS  Google Scholar 

  103. Rohaizu R, Wanrosli W (2017) Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose. Ultrason Sonochem 34:631–639

    Article  CAS  Google Scholar 

  104. Ho TTT et al (2015) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellul 22(1):421–433

    Article  CAS  Google Scholar 

  105. Nechyporchuk O, Pignon F, Belgacem MN (2015) Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J Mater Sci 50(2):531–541

    Article  CAS  Google Scholar 

  106. Sirviö JA, Visanko M, Liimatainen H (2015) Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose. Green Chem 17(6):3401–3406

    Article  CAS  Google Scholar 

  107. Oun AA, Rhim J-W (2016) Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: effect of isolation method. Mater Lett 168:146–150

    Article  CAS  Google Scholar 

  108. Lee H-R et al (2018) A new method to produce cellulose nanofibrils from microalgae and the measurement of their mechanical strength. Carbohyd Polym 180:276–285

    Article  CAS  Google Scholar 

  109. Valdebenito F et al (2017) On the nanofibrillation of corn husks and oat hulls fibres. Ind Crops Prod 95:528–534

    Article  CAS  Google Scholar 

  110. Lee H, Mani S (2017) Mechanical pretreatment of cellulose pulp to produce cellulose nanofibrils using a dry grinding method. Ind Crops Prod 104:179–187

    Article  CAS  Google Scholar 

  111. Park C-W et al (2017) Preparation and characterization of cellulose nanofibrils with varying chemical compositions. BioRes 12(3):5031–5044

    CAS  Google Scholar 

  112. Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315

    Article  CAS  Google Scholar 

  113. Meyabadi TF et al (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technology, vol 261, pp 232–240

    Google Scholar 

  114. Chen Y et al (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohyd Polym 76(4):607–615

    Article  CAS  Google Scholar 

  115. Abushammala H, Krossing I, Laborie MP (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohyd Polym 134:609–616

    Article  CAS  Google Scholar 

  116. Miao J et al (2016) One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose 23(2):1209–1219

    Article  CAS  Google Scholar 

  117. Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly (vinyl alcohol) composites. Ultrason Sonochem 19(3):479–485

    Article  CAS  Google Scholar 

  118. Elanthikkal S et al (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohyd Polym 80(3):852–859

    Article  CAS  Google Scholar 

  119. Kumar A et al (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phy Chem 2(1):1–8

    Google Scholar 

  120. Haafiz MM et al (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohyd Polym 103:119–125

    Article  CAS  Google Scholar 

  121. Khawas P, Deka SC (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohyd Polym 137:608–616

    Article  CAS  Google Scholar 

  122. Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohyd Polym 87(1):564–573

    Article  CAS  Google Scholar 

  123. Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohyd Polym 82(2):329–336

    Article  CAS  Google Scholar 

  124. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohyd Polym 86(3):1291–1299

    Article  CAS  Google Scholar 

  125. Satyamurthy P et al (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohyd Polym 83(1):122–129

    Article  CAS  Google Scholar 

  126. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37(1):93–99

    Article  CAS  Google Scholar 

  127. Sheltami RM et al (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohyd Polym 88(2):772–779

    Article  CAS  Google Scholar 

  128. Xiong R et al (2012) Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics. Cellulose 19(4):1189–1198

    Article  CAS  Google Scholar 

  129. Chandrahasa R, Rajamane NP, Jeyalakshmi et al (2014) Development of cellulose nanofibres from coconut husks. Int J Emerg Technol Adv Eng 4(4):2250–2259

    Google Scholar 

  130. Nascimento DM et al (2014) A novel green approach for the preparation of cellulose nanowhiskers from white coir. Carbohyd Polym 110:456–463

    Article  CAS  Google Scholar 

  131. Lamaming J et al (2015) Cellulose nanocrystals isolated from oil palm trunk. Carbohyd Polym 127:202–208

    Article  CAS  Google Scholar 

  132. Indarti E, Marwan, Wanrosli WD et al (2015) Thermal stability of oil palm empty fruit bunch (OPEFB) nanocrystalline cellulose: effects of post-treatment of oven drying and solvent exchange techniques. J Phys: Conf Ser 622(1):12–25

    Google Scholar 

  133. Chandra J, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohyd Polym 142:158–166

    Article  CAS  Google Scholar 

  134. Segal LGJMA et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  135. Revol JF, Dietrich A, Goring DAI (1987) Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can J Chem 65(8):1724–1725

    Article  CAS  Google Scholar 

  136. Cherian BM et al (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohyd Polym 86(4):1790–1798

    Article  CAS  Google Scholar 

  137. Cherian BM et al (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohyd Polym 81(3):720–725

    Article  CAS  Google Scholar 

  138. Rosa SM et al (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohyd Polym 87(2):1131–1138

    Article  CAS  Google Scholar 

  139. Rosa MF et al (2010) Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohyd Polym 81(1):83–92

    Article  CAS  Google Scholar 

  140. Silvério HA et al (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436

    Article  CAS  Google Scholar 

  141. Neto WPF et al (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue—soy hulls. Ind Crops Prod 42:480–488

    Article  CAS  Google Scholar 

  142. Neto WPF et al (2016) Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Adv 6(79):76017–76027

    Article  CAS  Google Scholar 

  143. Luykx DM et al (2008) A review of analytical methods for the identification and characterization of nano delivery systems in food. J Agric Food Chem 56(18):8231–8247

    Article  CAS  Google Scholar 

  144. Goldstein J et al (2012) Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. Springer Science and Business Media, (2)

    Google Scholar 

  145. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104(6):1153–1175

    Article  CAS  Google Scholar 

  146. Wang QQ et al (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19(6):2033–2047

    Article  CAS  Google Scholar 

  147. Azubuike CP, Okhamafe AO (2012) Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Inter J Recycl Org Waste Agric 1:1–7

    Article  Google Scholar 

  148. Adel AM et al (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical Properties. Carbohyd Polym 83:676

    Article  CAS  Google Scholar 

  149. Lee KY et al (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27

    Article  CAS  Google Scholar 

  150. Yang S, Bai S, Wang Q (2018) Sustainable packaging biocomposites from polylactic acid and wheat straw: enhanced physical performance by solid state shear milling process. Compos Sci Technol 158:34–42

    Article  CAS  Google Scholar 

  151. Ashori A et al (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohyd Polym 102:369–375

    Article  CAS  Google Scholar 

  152. Abdul Khalil HPS et al (2016) A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew Sustain Energy Rev 64:823–836

    Article  CAS  Google Scholar 

  153. Frone AN et al (2013) Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohyd Polym 91(1):377–384

    Article  CAS  Google Scholar 

  154. Oksman K et al (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A: Appl Sci Manuf 83:2–18

    Article  CAS  Google Scholar 

  155. Oksman K et al (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenergy 35(1):146–152

    Article  CAS  Google Scholar 

  156. Lu Y et al (2017) Synthesis of new polyether titanate coupling agents with different polyethyleneglycol segment lengths and their compatibilization in calcium sulfate whisker/poly(vinyl chloride) composites. RSC Adv 7(50):31628–31640

    Article  CAS  Google Scholar 

  157. Poveda RL, Gupta N (2016) Mechanical properties of CNF/polymer composites carbon nanofiber reinforced polymer composites. Cham: Springer, pp 27–42

    Google Scholar 

  158. Kobe R et al (2016) Stretchable composite hydrogels incorporating modified cellulose nanofiber with dispersibility and polymerizability: Mechanical property control and nanofiber orientation. Polym 97:480–486

    Article  CAS  Google Scholar 

  159. Ng HM et al (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Eng 75:176–200

    Article  CAS  Google Scholar 

  160. Kalia S et al (2011) Cellulose-Based Bio- and Nanocomposites: a review. Int J Polym Sci

    Google Scholar 

  161. Kalia S et al (2014) Nanofibrillated cellulose: Surface modification and potential applications. Colloid Polym Sci 292(1):5–31

    Article  CAS  Google Scholar 

  162. Ishii D, Saito T, Isogai A (2011) viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 12(3):548–550

    Article  CAS  Google Scholar 

  163. Qing Y et al (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohyd Polym 97(1):226–234

    Article  CAS  Google Scholar 

  164. Missoum K, Belgacem M, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Mater 6(5):1745

    Article  CAS  Google Scholar 

  165. Ahmadi M et al (2017) Topochemistry of cellulose nanofibers resulting from molecular and polymer grafting. Cellulose 24(5):2139–2152

    Article  CAS  Google Scholar 

  166. Roy D et al (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064

    Article  CAS  Google Scholar 

  167. Safdari F et al (2017) Enhanced properties of poly(ethylene oxide)/cellulose nanofiber biocomposites. Cellulose 24(2):755–767

    Article  CAS  Google Scholar 

  168. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180

    Article  CAS  Google Scholar 

  169. Morán JI et al (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159

    Article  CAS  Google Scholar 

  170. Fahma F et al (2011) Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose 18:443–450

    Article  CAS  Google Scholar 

  171. Brito BS et al (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19(5):1527–1536

    Article  CAS  Google Scholar 

  172. Fan JS, Li YH (2012) Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber. Carbohyd Polym 88(4):1184–1188

    Article  CAS  Google Scholar 

  173. Fortunati E et al (2013) Extraction of cellulose nanocrystals from Phormium tenax fibres. J Polym Environ 21(2):319–328

    Article  CAS  Google Scholar 

  174. Morais JPS et al (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohyd Polym 91(1):229–235

    Article  CAS  Google Scholar 

  175. Santos RMD et al (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crops Prod 50:707–714

    Article  CAS  Google Scholar 

  176. Espinosa CS et al (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14(4):1223–1230

    Article  CAS  Google Scholar 

  177. Le Normand M, Moriana R, Ek M (2014) Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohyd Polym 111:979–987

    Article  CAS  Google Scholar 

  178. Mueller S, Weder C, Foster EJ (2014) Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC Adv 4(2):907–915

    Article  CAS  Google Scholar 

  179. Bettaieb F et al (2015) Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohyd Polym 123:99–104

    Article  CAS  Google Scholar 

  180. Devi RR (2015) Fabrication of cellulose nanocrystals from agricultural compost. Compost Sci Utilization 23(2):104–116

    Article  CAS  Google Scholar 

  181. Mohamed MA et al (2015) Physicochemical properties of “green” nanocrystalline cellulose isolated from recycled newspaper. RSC Adv 5(38):29842–29849

    Article  CAS  Google Scholar 

  182. Dungani R et al (2016) Preparation and fundamental characterization of cellulose nanocrystal from oil palm fronds biomass. J Poly Environ 1:1–9

    Google Scholar 

  183. Salajková M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22(37):19798–19805

    Article  CAS  Google Scholar 

  184. Pan M, Zhou X, Chen M (2013) Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization. BioRes 8(1):933–943

    Article  Google Scholar 

  185. Savadekar NR et al (2015) Preparation of cotton linter nanowhiskers by high-pressure homogenization process and its application in thermoplastic starch. Appl Nanosci 5(3):281–290

    Article  CAS  Google Scholar 

  186. Beltramino F et al (2015) Increasing yield of nanocrystalline cellulose preparation process by a cellulase pretreatment. Biores technol 192:574–581

    Article  CAS  Google Scholar 

  187. Beltramino F et al (2016) Optimization of sulfuric acid hydrolysis conditions for preparation of nanocrystalline cellulose from enzymatically pretreated fibers. Cellulose 23(3):1777–1789

    Article  CAS  Google Scholar 

  188. Camargo LA et al (2016) Feasibility of manufacturing cellulose nanocrystals from the solid residues of second-generation ethanol production from sugarcane bagasse. BioEnergy Res 9(3):894–906

    Article  CAS  Google Scholar 

  189. Zhao Y et al (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 117:286–296

    Article  CAS  Google Scholar 

  190. Csiszar E et al (2016) The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films. Ultrason Sonochem 31:473–480

    Article  CAS  Google Scholar 

  191. Cudjoe E et al (2017) Miscanthus Giganteus: a commercially viable sustainable source of cellulose nanocrystals. Carbohyd Polym 155:230–241

    Article  CAS  Google Scholar 

  192. Hamid SBA et al (2016) Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose. Carbohyd Polym 138:349–355

    Article  CAS  Google Scholar 

  193. Li Y et al (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18(4):1010–1018

    Article  CAS  Google Scholar 

  194. Lu Q et al (2014) Preparation and characterization of cellulose nanocrystals via ultrasonication-assisted FeCl3-catalyzed hydrolysis. Cellulose 21(5):3497–3506

    Article  CAS  Google Scholar 

  195. Lim YH et al (2016) NanoCrystalline cellulose isolated from oil palm empty fruit bunch and its potential in cadmium metal removal. In: MATEC web of conferences, vol 59. EDP Sciences

    Google Scholar 

  196. Sun B et al (2016) Single-step extraction of functionalized cellulose nanocrystal and polyvinyl chloride from industrial wallpaper wastes. Ind Crops Prod 89:66–77

    Article  CAS  Google Scholar 

  197. Tang Y et al (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohyd Polym 125:360–366

    Article  CAS  Google Scholar 

  198. Yu H et al (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1(12):3938–3944

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to thank their parental institutes (Universiti Sains Malaysia through USM Research University Incentive, RUI Grant 1001/PKIMIA/8011077 and Short Term Grant 304/PKIMIA/6315100) for providing the necessary facility to accomplish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hazwan Hussin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hazwan Hussin, M., Trache, D., Chuin, C.T.H., Nurul Fazita, M.R., Mohamad Haafiz, M.K., Hossain, M.S. (2019). Extraction of Cellulose Nanofibers and Their Eco-friendly Polymer Composites. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_23

Download citation

Publish with us

Policies and ethics