Skip to main content

Rubber Clay Nanocomposites

  • Chapter
  • First Online:
Sustainable Polymer Composites and Nanocomposites

Abstract

The use of nanofillers allows the development of nanocomposites with improved properties and novel applications. The technological goal is possible due to the new compounding method that allows a particle dispersion in the nanometer scale increasing the specific surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

APTES:

(3—aminopropyl) triethoxysilane

CB:

Carbon black

CEC:

Cation exchange capacity

CIIR:

Chlorobutyl rubber

CL:

Concentrated Natural Rubber Latex

Dim-Br:

o-xylylenebis (triphenylphosphoniumbromide)

DMA:

Dynamic mechanical analysis

DSC:

Differential scanning calorimetry

DTG:

Derivative thermogravimetric analysis

EDX:

Electron dispersive X-ray spectroscopy

EG:

Expanded graphite

EPDM:

Ethylene propylene diene rubber

FL:

Fresh Natural Rubber Latex

FTIR:

Fourier transform infrared

Hal:

Hallosyte

HDTMA+:

Hexadecyl trimethylammonium

IIR:

Isobutylene isoprene rubber

MH:

Maximum torque

Mt:

Montmorillonite

NBR:

Acrylonitrile butadiene rubber

NK:

Nanokaolin

NR:

Natural rubber

OC:

Organoclay

ODTMA+:

Octadecyl trimethylammonium

OMt:

Organomodified montmorillonite

PAS:

Positron annhilation lifetime spectroscopy

PA6:

Polyamide 6

phr:

per hundred of rubber

PLA:

Olylactide acid

SANS:

Small angle neutrón scattering

SAXS:

Small Angle X-Ray Scattering

SBR:

Styrene Butadiene Rubber

SEM:

Scanning electron microscopy

SI:

Silica

tan δ:

Loss tangent

tc90:

Cure time

TEM:

Transmission electron microscopy

T g :

Glass transition temperature

TGA:

Thermogravimetric analysis

ts2:

Scorch time

WAXS:

Wide Angle X-Ray Scattering

Wc:

Water content

XRD:

X-ray diffraction

References

  1. Chao CC, Lin GG, Tsai HC, Lee YL, Chang PH, Cheng WT, Hsiue GH (2015) Isobutylene-isoprene rubber/layered silicate nanocomposites prepared using latex method: direct casting versus melt mixing after coagulation. J Reinf Plast Compos 34(21):1791–1803

    Article  CAS  Google Scholar 

  2. Conzatti L, Stagnaro P, Colucci G, Bongiovanni R, Priola A, Lostritto A, Galimberti M (2012) The clay mineral modifier as the key to steer the properties of rubber nanocomposites. Appl Clay Sci 61:14–21

    Article  CAS  Google Scholar 

  3. Gui Y, Zheng J, Ye X, Han D, Xi M, Zhang L (2016) Preparation and performance of silica/SBR masterbatches with high silica loading by latex compounding method. Compos Part B Eng 85:130–139

    Article  CAS  Google Scholar 

  4. Maiti M, Bhattacharya M, Bhowmick AK (2008) Elastomer Nanocomposites. Rubber Chem Technol 81(3):384–469

    Article  CAS  Google Scholar 

  5. Osman AF, Abdul Hamid AR, Rakibuddin, M, Khung Weng G, Ananthakrishnan R, Ghani, SA, Mustafa Z (2017) Hybrid silicate nanofillers: impact on morphology and performance of EVA copolymer upon in vitro physiological fluid exposure. J Appl Polym Sci 134(12)

    Google Scholar 

  6. George SC, Rajan R, Aprem AS, Thomas S, Kim SS (2016) The fabrication and properties of natural rubber-clay nanocomposites. Polym Test 51:165–173

    Article  CAS  Google Scholar 

  7. Pal K, Pal SK, Das CK, Kim JK (2010) Influence of fillers on NR/SBR/XNBR blends. Morphology and wear. Tribol Int 43(8):1542–1550

    Article  CAS  Google Scholar 

  8. Rezende CA, Bragança FC, Doi TR, Lee LT, Galembeck F, Boué F (2010) Natural rubber-clay nanocomposites: mechanical and structural properties. Polym (Guildf) 51(16):3644–3652

    Article  CAS  Google Scholar 

  9. Zhang Y, Liu Q, Zhang S, Zhang Y, Cheng H (2015) Gas barrier properties and mechanism of kaolin/styrene-butadiene rubber nanocomposites. Appl Clay Sci 111:37–43

    Article  CAS  Google Scholar 

  10. Przybyłek M, Bakar M, Mendrycka M, Kosikowska U, Malm A, Worzakowska M, Szymborski T, Kędra-Królik K (2017) Rubber elastomeric nanocomposites with antimicrobial properties. Mater Sci Eng, C 76:269–277

    Article  CAS  Google Scholar 

  11. Choi SS (2002) Difference in bound rubber formation of silica and carbon black with styrene-butadiene rubber. Polym Adv Technol 13(6):466–474

    Article  CAS  Google Scholar 

  12. Alex R (2010) Nanofillers in rubber-rubber blends. In: Thomas S, Stephen R (eds) Rubber nanocomposites: preparation, properties and applications. Wiley, Chichester, UK, pp 209–234

    Google Scholar 

  13. Hashim AS, Azahari B, Ikeda Y, Kohjiya S (1998) The effect of bis (3-triethoxysilylpropyl) tetrasulfide on silica reinforcement of styrene—butadiene rubber. Rubber Chem Technol 71(2):289–299

    Article  CAS  Google Scholar 

  14. Gatos KG, Karger-Kocsis J (2010) Rubber/clay nanocomposites: preparation, properties and applications. In: Thomas S, Stephen R (eds) Rubber nanocomposites: preparation, properties and applications. Wiley, Chichester, UK, pp 169–190

    Google Scholar 

  15. ten Brinke JW, Debnath SC, Reuvekamp LAEM, Noordermeer JWM (2003) Mechanistic aspects of the role of coupling agents in silica-rubber composites. Compos Sci Technol 63(8):1165–1174

    Article  CAS  Google Scholar 

  16. Rattanasom N, Saowapark T, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test 26(3):369–377

    Article  CAS  Google Scholar 

  17. Liu Q, Zhang Y, Xu H (2008) Properties of vulcanized rubber nanocomposites filled with nanokaolin and precipitated silica. Appl Clay Sci 42(1–2):232–237

    Article  CAS  Google Scholar 

  18. Galimberti M, Agnelli S, Cipolletti, V (2016) Hybrid filler systems in rubber nanocomposites. Elsevier Ltd

    Google Scholar 

  19. Siririttikrai N, Thanawan S, Suchiva K, Amornsakchai T (2017) Comparative study of natural rubber/clay nanocomposites prepared from fresh or concentrated latex. Polym Test 63:244–250

    Article  CAS  Google Scholar 

  20. Usha Devi, KS, Ponnamma, D, Causin, V, Maria HJ, Thomas S (2015) Enhanced morphology and mechanical characteristics of clay/styrene butadiene rubber nanocomposites. Appl Clay Sci 114, 568–576

    Google Scholar 

  21. Nawani P, Burger C, Rong L, Hsiao BS, Tsou AH (2015) Structure and permeability relationships in polymer nanocomposites containing carbon black and organoclay. Polym (United Kingdom) 64:19–28

    CAS  Google Scholar 

  22. Botana A, Mollo M, Eisenberg P, Torres Sanchez RM (2010) Effect of modified montmorillonite on biodegradable PHB nanocomposites. Appl Clay Sci 47(3–4):263–270

    Google Scholar 

  23. Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    Article  CAS  Google Scholar 

  24. Kievani MB, Edrak M (2015) Synthesis, characterization and assessment thermal properties of clay based nanopigments. Front Chem Sci Eng 9:40–45

    Google Scholar 

  25. Galimberti M, Senatore S, Lostritto A, Giannini L, Conzatti L, Costa G, Guerra G (2009) Reinforcement of diene elastomers by organically modified layered silicates. E-Polymers 57:1–16

    Google Scholar 

  26. Marques FADM, Angelini R, Ruocco G, Ruzicka B (2017) Isotopic effect on the gel and glass formation of a charged colloidal clay: laponite. J Phys Chem B 121(17):4576–4582

    Article  CAS  Google Scholar 

  27. Ambre A, Jagtap R, Dewangan B (2009) ABS nanocomposites containing modified clay. J Reinf Plast Compos 28(3):343–352

    Article  CAS  Google Scholar 

  28. Bianchi AE, Fernández M, Pantanetti M, Viña R, Torriani I, Sánchez RMT, Punte G (2013) ODTMA + and HDTMA + organo-montmorillonites characterization: new insight by WAXS, SAXS and surface charge. Appl Clay Sci 83–84:280–285

    Article  CAS  Google Scholar 

  29. Daitx TS, Carli LN, Crespo JS, Mauler RS (2015) Effects of the organic modification of different clay minerals and their application in biodegradable polymer nanocomposites of PHBV. Appl Clay Sci 115:157–164

    Article  CAS  Google Scholar 

  30. Zhuang G, Gao J, Chen H, Zhang, Z (2018) A new one-step method for physical purification and organic modification of sepiolite. Appl. Clay Sci 153(November 2017), 1–8

    Google Scholar 

  31. Zhou F, Yan C, Zhang Y, Tan J, Wang H, Zhou S, Pu S (2016) Purification and defibering of a Chinese sepiolite. Appl Clay Sci 125, 119–126

    Google Scholar 

  32. Milošević M, Logar M, Kaluderović L, Jelić I (2017) Characterization of clays from Slatina (Ub, Serbia) for potential uses in the ceramic industry. Energy Proc 125:650–655

    Article  CAS  Google Scholar 

  33. Gamoudi S, Srasra E (2017) Characterization of Tunisian clay suitable for pharmaceutical and cosmetic applications. Appl Clay Sci 146(May):162–166

    Article  CAS  Google Scholar 

  34. Peyne J, Gharzouni A, Sobrados I, Rossignol S (2018) Identifying the differences between clays used in the brick industry by various methods: iron extraction and NMR spectroscopy. Appl Clay Sci (October 2017):0–1

    Google Scholar 

  35. Ezquerro CS, Ric GI, Miñana CC, Bermejo JS (2015) Characterization of montmorillonites modified with organic divalent phosphonium cations. Appl Clay Sci 111:1–9

    Article  CAS  Google Scholar 

  36. Alves JL de T. V. e. Rosa P, Morales, AR (2017) Evaluation of organic modification of montmorillonite with ionic and nonionic surfactants. Appl Clay Sci 150(June):23–33

    Google Scholar 

  37. Hojiyev R, Ulcay Y, Çelik MS (2017) Development of a clay-polymer compatibility approach for nanocomposite applications. Appl Clay Sci 146(April):548–556

    Article  CAS  Google Scholar 

  38. Sookyung U, Nakason C, Venneman N, Thaijaroend W (2016) Influence concentration of modifying agent on properties of natural rubber/organoclay nanocomposites. Polym Test 54:223–232

    Article  CAS  Google Scholar 

  39. Soares BG, Ferreira SC, Livi S (2017) Modification of anionic and cationic clays by zwitterionic imidazolium ionic liquid and their effect on the epoxy-based nanocomposites. Appl Clay Sci 135:347–354

    Article  CAS  Google Scholar 

  40. Verdejo R, Lopez-Manchado MA, Valentini L, Kenny JM (2010) Carbon nanotube reinforced rubber composites. In: Thomas S, Stephen R (eds) Rubber nanocomposites: preparation, properties and applications. Wiley, Chichester, UK, pp 147–162

    Google Scholar 

  41. Carli LN, Roncato CR, Zanchet A, Mauler RS, Giovanela M, Brandalise RN, Crespo JS (2011) Characterization of natural rubber nanocomposites filled with organoclay as a substitute for silica obtained by the conventional two-roll mill method. Appl Clay Sci 52(1–2):56–61

    Article  CAS  Google Scholar 

  42. Praveen S, Chattopadhyay PK, Albert P, Dalvi VG, Chakraborty BC, Chattopadhyay S (2009) Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: development of dual structure. Compos Part A Appl Sci Manuf 40(3):309–316

    Article  CAS  Google Scholar 

  43. Sadek EM, El-Nashar DE, Ahmed SM (2015) Effect of organoclay reinforcement on the curing characteristics and technological properties of styrene-butadiene rubber. Polym Compos 36(7):1293–1302

    Article  CAS  Google Scholar 

  44. Youssef HA, Abdel-Monem YK, Diab WW (2017) Effect of gamma irradiation on the properties of natural rubber latex and styrene-butadiene rubber latex nanocomposites. Polym Compos 38(2):E189–E198

    Article  CAS  Google Scholar 

  45. Liu J, Li X, Xu L, Zhang P (2016) Investigation of aging behavior and mechanism of nitrile-butadiene rubber (NBR) in the accelerated thermal aging environment. Polym Test 54(2016):59–66

    CAS  Google Scholar 

  46. Xue X, Yin Q, Jia H, Zhang X, Wen Y, Ji Q, Xu Z (2017) Enhancing mechanical and thermal properties of styrene-butadiene rubber/carboxylated acrylonitrile butadiene rubber blend by the usage of graphene oxide with diverse oxidation degrees. Appl Surf Sci 423:584–591

    Article  CAS  Google Scholar 

  47. Costa FR, Pradhan S, Wagenknecht U, Bhowmick AK, Heinrich G (2010) XNBR/LDH nanocomposites: effect of vulcanization and organic modifier on nanofiller dispersion and strain-induced crystallization. J Polym Sci, Part B: Polym Phys 48(22):2302–2311

    Article  CAS  Google Scholar 

  48. de Sousa F, Mantovani G, Scuracchio C (2011) Mechanical properties and morphology of NBR with different clays. Polym Testing 30:819–825

    Article  CAS  Google Scholar 

  49. Yu Y, Gu Z, Song G, Li P, Li H, Liu W (2011) Structure and properties of organo-montmorillonite/nitrile butadiene rubber nanocomposites prepared from latex dispersions. Appl Clay Sci 52(4):381–385

    Article  CAS  Google Scholar 

  50. Ma Y, Li Q-F, Zhang L-Q, Wu Y-P (2006) Role of stearic acid in preparing EPDM/clay nanocomposites by melt compounding. Polym J 39(1):48–54

    Article  CAS  Google Scholar 

  51. Usuki A, Tukigase A, Kato M (2002) Preparation and properties of EPDM-clay hybrids. J Appl Polym Sci 43:2185–2189

    CAS  Google Scholar 

  52. Zheng H, Zhang Y, Peng Z, Zhang Y (2004) Influence of clay modification on the structure and mechanical properties of EPDM/montmorillonite nanocomposites. Polym Test 23(2):217–223

    Article  CAS  Google Scholar 

  53. Chang YW, Yang Y, Ryu S, Nah C (2002) Preparation and properties of EPDM/organomontmorillonite hybrid nanocomposites. Polym Int 51(4):319–324

    Article  CAS  Google Scholar 

  54. Zhang F, Zhao Q, Liu T, Lei Y, Chen C (2018) Preparation and relaxation dynamics of ethylene–propylene–diene rubber/clay nanocomposites with crosslinking interfacial design. J Appl Polym Sci 135(1):1–8

    Article  CAS  Google Scholar 

  55. Mansilla MA, Valentín JL, López-Manchado MA, González-Jiménez A, Marzocca AJ (2016) Effect of entanglements in the microstructure of cured NR/SBR blends prepared by solution and mixing in a two-roll mill. Eur Polym J 81:365–375

    Article  CAS  Google Scholar 

  56. Hess WM, Herd CR, Vegvari PC (1993) Characterization of immiscible elastomer blends. 330–372

    Google Scholar 

  57. Groves S (1998) Crosslink density distributions in NR/BR blends: effect of cure temperature and time. Rubber Chem Technol 44:958–965

    Article  Google Scholar 

  58. Maroufkhani M, Katbab AA, Zhang J (2018) Manipulation of the properties of PLA nanocomposites by controlling the distribution of nanoclay via varying the acrylonitrile content in NBR rubber. Polym Test 65:313–321

    Article  CAS  Google Scholar 

  59. Rajasekar R, Pal K, Heinrich G, Das A, Das CK (2009) Development of nitrile butadiene rubber-nanoclay composites with epoxidized natural rubber as compatibilizer. Mater Des 30(9):3839–3845

    Article  CAS  Google Scholar 

  60. Kanny K, Mohan TP (2017) Rubber nanocomposites with nanoclay as the filler. In: Thomas S, Maria HJ (eds) Progress in rubber nanocomposites. Woodhead Publishing, Duxford, United Kingdom, pp 153–177

    Chapter  Google Scholar 

  61. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11), 1539–1641

    Google Scholar 

  62. Theng BKG (2012) Polymer-clay nanocomposites, 2nd ed., vol. 4. Elsevier B.V

    Google Scholar 

  63. Wang LL, Zhang LQ, Tian M (2012) Mechanical and tribological properties of acrylonitrile-butadiene rubber filled with graphite and carbon black. Mater Des 39:450–457

    Article  CAS  Google Scholar 

  64. Varghese S, Karger-Kocsis J (2003) Natural rubber-based nanocomposites by latex compounding with layered silicates. Polym (Guildf) 44(17):4921–4927

    Article  CAS  Google Scholar 

  65. Brantseva TV, Antonov SV, Gorbunova IY (2018) Adhesion properties of the nanocomposites filled with aluminosilicates and factors affecting them: a review. Int J Adhes Adhes 82:263–281

    Article  CAS  Google Scholar 

  66. Fawaz J, Mittal V (2015) Synthesis of polymer nanocomposites: review of various techniques. In: Mittal V (ed) Synthesis techniques for polymer nanocomposites, 1st edn. Wiley-VCH, Weinheim, pp 1–30

    Google Scholar 

  67. Ponnamma D Maria HJ, Chandra AK, Thomas S (2013) Rubber nanocomposites: latest trends and concepts. In: Visakh PM, Thomas S, Chandra A (ed) Advances in elastomers II. Advanced structured materials, vol. 12, April, Springer, Berlin, Heidelberg, pp 69–107

    Google Scholar 

  68. Distler D, Neto WS (2017) Machado F emulsion polymerization. In: Reference module in materials science and materials engineering, June, Elsevier, pp 35–56

    Google Scholar 

  69. Tan J, Wang X, Luo Y, Jia D (2012) Rubber clay nanocomposites by combined latex compounding. pp 825–831

    Google Scholar 

  70. Chaudhari CV, Dubey KA, Bhardwaj YK, Sabharwal S (2012) Radiation processed styrene-butadiene rubber/ethylene-propylene diene rubber/multiple-walled carbon nanotubes nanocomposites: effect of MWNT addition on solvent permeability behavior. J Macromol Sci Part B Phys 51(5):839–859

    Article  CAS  Google Scholar 

  71. Dubey KA, Bhardwaj YK, Chaudhari CV, Bhattacharya S, Gupta SK, Sabharwal S (2006) Radiation effects on SBR–EPDM blends: a correlation with blend morphology. J Polym Sci, Part B: Polym Phys 44(12):1676–1689

    Article  CAS  Google Scholar 

  72. Shoushtari Zadeh Naseri A, Jalali-Arani A (2015) A comparison between the effects of gamma radiation and sulfur cure system on the microstructure and crosslink network of (styrene butadiene rubber/ethylene propylene diene monomer) blends in presence of nanoclay. Radiat Phys Chem 115, 68–74

    Google Scholar 

  73. Satyanarayana MS, Bhowmick AK, Dinesh Kumar K (2016) Preferentially fixing nanoclays in the phases of incompatible carboxylated nitrile rubber (XNBR)-natural rubber (NR) blend using thermodynamic approach and its effect on physico mechanical properties. Polym (United Kingdom) 99:21–43

    Google Scholar 

  74. Bandyopadhyay A, Thakur V, Pradhan S, Bhowmick AK (2010) Nanoclay distribution and its influence on the mechanical properties of rubber blends. J Appl Polym Sci 115:1237–1246

    Article  CAS  Google Scholar 

  75. Ebrahimi Jahromi A, Ebrahimi Jahromi HR, Hemmati F, Saeb MR, Goodarzi V, Formela K (2016) Morphology and mechanical properties of polyamide/clay nanocomposites toughened with NBR/NBR-g-GMA: a comparative study. Compos Part B Eng 90, 478–484

    Google Scholar 

  76. Wang C, Su JX, Li J, Yang H, Zhang Q, Du RN, Fu Q (2006) Phase morphology and toughening mechanism of polyamide 6/EPDM-g-MA blends obtained via dynamic packing injection molding. Polym (Guildf) 47(9):3197–3206

    Article  CAS  Google Scholar 

  77. Yang R, Song Y, Zheng Q (2017) Payne effect of silica-filled styrene-butadiene rubber. Polym (United Kingdom) 116:304–313

    CAS  Google Scholar 

  78. Zachariah AK, Chandra AK, Mohammed PK, Parameswaranpillai J, Thomas S (2016) Experiments and modeling of non-linear viscoelastic responses in natural rubber and chlorobutyl rubber nanocomposites. Appl Clay Sci 123:1–10

    Article  CAS  Google Scholar 

  79. Zachariah AK Transport properties of polymeric membranes: gas permeability and theoretical modeling of elastomers and its nanocomposites. Chapter 21, p 441

    Google Scholar 

  80. Mohan TP, Kuriakose J, Kanny K (2012) Water uptake and mechanical properties of natural rubber-styrene butadine rubber (nr-sr)—nanoclay composites. J Ind Eng Chem 18(3):979–985

    Article  CAS  Google Scholar 

  81. Wang ZF, Wang B, Qi N, Zhang HF, Zhang LQ (2005) Polymer, 46(3):719–724

    Google Scholar 

  82. Qureshi MN, Qammar H (2010) Mill processing and properties of rubber-clay nanocomposites. Mater Sci Eng, C 30(4):590–596

    Article  CAS  Google Scholar 

  83. Mathew G, Rhee JM, Lee YS, Park DH, Nah C (2008) Cure kinetics of ethylene acrylate rubber/clay nanocomposites. J Ind Eng Chem 14(1):60–65

    Article  CAS  Google Scholar 

  84. Zhang W, Ma Y, Xu Y, Wang C, Chu F (2013) Lignocellulosic ethanol residue-based lignin-phenol-formaldehyde resin adhesive. Int J Adhes Adhes 40(2013):11–18

    Article  CAS  Google Scholar 

  85. Woo CS, Kim WD, Do Kwon J (2008) A study on the material properties and fatigue life prediction of natural rubber component 483–484(1–2) C, 376–381

    Google Scholar 

  86. Brantseva TV, Antonov SV, Gorbunova, IY Adhesion properties of the nanocomposites filled with aluminosilicates and factors affecting them: a review. Int J Adhes Adhes 82(December 2017):263–281, 2018

    Google Scholar 

  87. Ahsan T (2007) Composition of bulk filler and epoxy-clay nanocomposite; U.S. Patent 7163973

    Google Scholar 

  88. Long-acting waterborne nanometer attapulgite clay/epoxy anticorrosive coating material and preparing method thereof, Chinese patent CN 102676028A, 2012

    Google Scholar 

  89. Gazeley KF, Wake WC (1990) Natural rubber adhesives Handbook of adhesives 3rd ed. Skeist I (ed) Chapman & Hall, NY, pp 167–84

    Google Scholar 

  90. Unalan IU, Cerri Gi, Marcuzzo E, Cozzolino CA, Farris S (2014) Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): current applications and future opportunities in the food packaging sector. RSC Adv 4:29393

    Google Scholar 

Download references

Acknowledgements

Authors wish to thank the financial support from the National Agency of Scientific and Technological Promotion (ANPCyT PICT-2015-0027) of the Minister of Science and Technology and Productive Innovation (MinCyT) of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Escobar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanchez, M.C., Bacigalupe, A., Escobar, M., Mansilla, M. (2019). Rubber Clay Nanocomposites. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_21

Download citation

Publish with us

Policies and ethics