Skip to main content

Current Scenario of Nanocomposite Materials for Fuel Cell Applications

  • Chapter
  • First Online:
Sustainable Polymer Composites and Nanocomposites

Abstract

Integration of hybrid nanocomposite materials in a fuel cell (FC) provides excellent improved properties such as proton conductivity, membrane stability. Similarly, the synergetic effect of materials used in nanocomposite membranes gives better water retention property, suppression of fuel crossover with reduced cost of operation. Currently available composite materials comprising of various metals, metal oxides, carbon materials and polymers display their superior properties in fuel cell applications. However, composite membranes have drawbacks such as CO poisoning, poor water retention capacity, and fuel crossover due to the less chemical and thermal stabilities. Recently, a tremendous advancement in various nanocomposite membranes led to superior properties in terms of high membrane stability, proton conductivity, suppression of fuel crossover, less CO poisoning. In this chapter, the recent developments in FC nanocomposite technology are systematically summarized. Furthermore, the advantages of the insertion of hybrid, clean, cheap and new variety of nanomaterials such as carbon nanotubes, graphene, chitosan and organic fillers in FC are neatly explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFC:

Alkaline fuel cell

CNT:

Carbon nanotubes

CV:

Cyclic voltammetry

DFT:

Density functional theory

DMFC:

Direct methanol fuel cell

FC:

Fuel cell

GDL:

Gas diffusion layers

IEC:

Ion exchange capacity

MCFC:

Molten carbonate fuel cell

MEA:

Membrane electrode assembly

MWCNT:

Multi-walled carbon nanotubes

ORR:

Oxygen reduction reaction

PAFC:

Phosphoric acid fuel cell

PEM:

Proton exchange membrane

PECVD:

Plasma enhanced chemical vapor deposition

PEEK:

Poly (ether ether ketone)

PEMFC:

Proton exchange membrane fuel cell

RH:

Relative humidity

SOFC:

Solid oxide fuel cell

SPEEK:

Sulfonated poly (ether ether ketone)

SWCNT:

Single-walled carbon nanotubes

PBI:

Polybenzimidazole

PVA:

Polyvinyl alcohol

XRD:

X-ray diffraction

References

  1. Hajilary N, Shahi A, Rezakazemi M (2018) Evaluation of socio-economic factors on CO2 emissions in Iran: factorial design and multivariable methods. J Clean Prod 189:108–115

    Article  Google Scholar 

  2. Hashemi F, Rowshanzamir S, Rezakazemi M (2012) CFD simulation of PEM fuel cell performance: effect of straight and serpentine flow fields. Math Comput Model 55(3–4):1540–1557

    Article  Google Scholar 

  3. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269

    Article  CAS  Google Scholar 

  4. Lemons RA (1990) Fuel cells for transportation. J Power Sources 29(1–2):251–264

    Article  CAS  Google Scholar 

  5. Peighambardoust S, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35(17):9349–9384

    Article  CAS  Google Scholar 

  6. Giorgi L, Leccese F (2013) Fuel cells: technologies and applications. Open Fuel Cells J 6:1–20

    Article  Google Scholar 

  7. Agmon N (1995) The grotthuss mechanism. Chem Phys Lett 244(5):456–462

    Article  CAS  Google Scholar 

  8. Ueki T, Watanabe M (2008) Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 41(11):3739–3749

    Article  CAS  Google Scholar 

  9. Rezakazemi M, Amooghin AE, Montazer Rashmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39(5):817–861

    Article  CAS  Google Scholar 

  10. Rezakazemi M, Razavi S, Mohammadi T, Nazari GA (2011) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J Membr Sci 379(1–2):224–232

    Article  CAS  Google Scholar 

  11. Dashti A, Harami HR, Rezakazemi M (2018) Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system. Int J Hydrogen Energy 43(13):6614–6624

    Article  CAS  Google Scholar 

  12. Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18

    Article  CAS  Google Scholar 

  13. Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5(100):82460–82470

    Article  CAS  Google Scholar 

  14. Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic-inorganic composite polymer electrolyte membranes. Springer International Publishing, Cham, pp 311–325

    Chapter  Google Scholar 

  15. Sodeifian G, Mojtaba R, Asghari M, Rezakzemi M (2018) Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2018.03.012

  16. Rezakazemi M, Dashti A, Asghari M, Saeed S (2017) H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS GA-ANFIS. Int J Hydrogen Energy 42(22):15211–15225

    Article  CAS  Google Scholar 

  17. Baheri B, Mahnaz S, Razakazemi M, Elahe M, Mohammadi T (2014) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202(3):316–321

    Article  CAS  Google Scholar 

  18. Shahverdi M, Baheri B, Razakazemi M, Elahe M, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53(7):1487–1493

    Article  CAS  Google Scholar 

  19. Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling. Int J Hydrogen Energy 38(2):1128–1135

    Article  CAS  Google Scholar 

  20. Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38(32):14035–14041

    Article  CAS  Google Scholar 

  21. Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37(22):17275–17284

    Article  CAS  Google Scholar 

  22. Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite a nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37(19):14576–14589

    Article  CAS  Google Scholar 

  23. Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41

    Article  Google Scholar 

  24. Boutsika LG, Enotiadis A, Nicotera I, Simari C, Charalambopoulou G, Giannelis EP, Steriotis T (2016) Nafion® nanocomposite membranes with enhanced properties at high temperature and low humidity environments. Int J Hydrogen Energy 41(47):22406–22414

    Article  CAS  Google Scholar 

  25. Mohammadi G, Jahanshahi M, Rahimpour A (2013) Fabrication and evaluation of Nafion nanocomposite membrane based on ZrO2–TiO2 binary nanoparticles as fuel cell MEA. Int J Hydrogen Energy 38(22):9387–9394

    Article  CAS  Google Scholar 

  26. Hooshyari K, Javanbhakt M, Naji L, Enhessari M (2014) Nanocomposite proton exchange membranes based on Nafion containing Fe2 TiO5 nanoparticles in water and alcohol environments for PEMFC. J Membr Sci 454:74–81

    Article  CAS  Google Scholar 

  27. Wang Z, Tang H, Zhang H, Lei M, Chen R, Xiao P, Pan M (2012) Synthesis of Nafion/CeO2 hybrid for chemically durable proton exchange membrane of fuel cell. J Membr Sci 421:201–210

    Article  CAS  Google Scholar 

  28. Cozzi D, de Bonis C, D’Epifanio A, Mecheri B, Tavares AC, Licoccia S (2014) Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications. J Power Sources 248:1127–1132

    Article  CAS  Google Scholar 

  29. de Bonis C, Cozzi D, Mecheri B, D’Epifanio A, Rainer A, De Porcellenis D, Licoccia S (2014) Effect of filler surface functionalization on the performance of Nafion/Titanium oxide composite membranes. Electrochim Acta 147:418–425

    Article  CAS  Google Scholar 

  30. Yang Y, Cuiping H, Beibei J, James I, Chengen H, Dean S, Tao J, Zhiqun L (2016) Graphene-based materials with tailored nanostructures for energy conversion and storage. Mater Sci Eng R Rep 102:1–72

    Article  Google Scholar 

  31. Farooqui U, Ahmad A, Hamid N (2018) Graphene oxide: a promising membrane material for fuel cells. Renew Sust Energy Rev 82:714–733

    Article  CAS  Google Scholar 

  32. Tsang AC, Kwok HY, Leung DY (2017) The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials. Solid State Sci 67:A1–A14

    Article  CAS  Google Scholar 

  33. Das TK, Prusty S (2013) Graphene-based polymer composites and their applications. Polym Plast Technol Eng 52(4):319–331

    Article  CAS  Google Scholar 

  34. Zhu C, Dong S (2013) Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 5(5):1753–1767

    Article  CAS  Google Scholar 

  35. Fampiou I, Ramasubramaniam A (2012) Binding of Pt nanoclusters to point defects in graphene: adsorption, morphology, and electronic structure. J Phys Chem C 116(11):6543–6555

    Article  CAS  Google Scholar 

  36. Liu M, Zhang R, Chen W (2014) Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem Rev 114(10):5117–5160

    Article  CAS  Google Scholar 

  37. Huang H, Chen H, Sun D, Wang X (2012) Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells. J Power Sources 204:46–52

    Article  CAS  Google Scholar 

  38. Qian W, Hao R, Zhou J, Eastman M, Manhat BA, Sun Q, Andrea MG, Jiao J (2013) Exfoliated graphene-supported Pt and Pt-based alloys as electrocatalysts for direct methanol fuel cells. Carbon 52:595–604

    Article  CAS  Google Scholar 

  39. Peng K-J, Lai J-Y, Liu Y-L (2016) Nanohybrids of graphene oxide chemically-bonded with Nafion: preparation and application for proton exchange membrane fuel cells. J Membr Sci 514:86–94

    Article  CAS  Google Scholar 

  40. Zhou X, Tang S, Yin Y, Sun S, Qiao J (2016) Hierarchical porous N-doped graphene foams with superior oxygen reduction reactivity for polymer electrolyte membrane fuel cells. Appl Energy 175:459–467

    Article  CAS  Google Scholar 

  41. Kirubaharan CJ, Santhakumar K, Gnanankumar G, Senthilkumar N, Jang J (2015) Nitrogen doped graphene sheets as metal free anode catalysts for the high performance microbial fuel cells. Int J Hydrogen Energy 40(38):13061–13070

    Article  CAS  Google Scholar 

  42. Rezakazemi M, Zhang Z (2018) Desulfurization materials A2—Dincer, Ibrahim comprehensive energy systems. Elsevier, Oxford, pp 944–979

    Google Scholar 

  43. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822

    Article  CAS  Google Scholar 

  44. Akbari E, Buntat Z (2017) Benefits of using carbon nanotubes in fuel cells: a review. Int J Energ Res 41(1):92–102

    Article  Google Scholar 

  45. Ghasemi M, Ismail M, Kamarudin SK, Saeedfar K, Wan Daud WR, Hassan SHA, Heng LY, Alam J, Oh SE (2013) Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells. Appl Energy 102:1050–1056

    Article  CAS  Google Scholar 

  46. Mehdinia A, Ziaei E, Jabbari A (2014) Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim Acta 130:512–518

    Article  CAS  Google Scholar 

  47. Tohidian M, Ghaffarian SR (2017) Polyelectrolyte nanocomposite membranes with imidazole-functionalized multi-walled carbon nanotubes for use in fuel cell applications. J Macromol Sci B 56(10):725–738

    Article  CAS  Google Scholar 

  48. Zhang R, He S, Lu Y, Chen W (2015) Fe Co, N-functionalized carbon nanotubes in situ grown on 3D porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction. J Mater Chem A 3(7):3559–3567

    Article  CAS  Google Scholar 

  49. Mishra P, Jain R (2016) Electrochemical deposition of MWCNT-MnO2/PPy nano-composite application for microbial fuel cells. Int J Hydrogen Energy 41(47):22394–22405

    Article  CAS  Google Scholar 

  50. Mirzaei F, Parnian MJ, Rowshanzamir S (2017) Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell. Energy 138:696–705

    Article  CAS  Google Scholar 

  51. Liew KB, Wan Daud WR, Ghasemi M, Loh KS, Ismail M, Lim SS, Leong JX (2015) Manganese oxide/functionalised carbon nanotubes nanocomposite as catalyst for oxygen reduction reaction in microbial fuel cell. Int J Hydrogen Energy 40(35):11625–11632

    Article  CAS  Google Scholar 

  52. Mourya V, Inamdar NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mater Lett 1(1):11–33

    Article  CAS  Google Scholar 

  53. Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohyd Polym 113:115–130

    Article  CAS  Google Scholar 

  54. Srinivasa P, Tharanathan R (2007) Chitin/chitosan—safe, ecofriendly packaging materials with multiple potential uses. Food Rev Int 23(1):53–72

    Article  CAS  Google Scholar 

  55. Lim S-H, Hudson SM (2003) Review of Chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J Macromol Sci C Polym Rev 43(2):223–269

    Article  CAS  Google Scholar 

  56. Mourya V, Inamdar NN (2009) Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med 20(5):1057

    Article  CAS  Google Scholar 

  57. Ilium L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res 15(9):1326–1331

    Article  Google Scholar 

  58. Ma J, Sahai Y (2013) Chitosan biopolymer for fuel cell applications. Carbohydr Polym 92(2):955–975

    Article  CAS  Google Scholar 

  59. Bai H, Zhang H, He Y, Liu J, Zhang B, Wang J (2014) Enhanced proton conduction of chitosan membrane enabled by halloysite nanotubes bearing sulfonate polyelectrolyte brushes. J Membr Sci 454:220–232

    Article  CAS  Google Scholar 

  60. Ma J, Sahai Y, Buchheit RG (2012) Evaluation of multivalent phosphate cross-linked chitosan biopolymer membrane for direct borohydride fuel cells. J Power Sources 202:18–27

    Article  CAS  Google Scholar 

  61. Hasani-Sadrabadi MM, Dashtimoghadam E, Mokarram N, Majedi FS, Jacob KI (2012) Triple-layer proton exchange membranes based on chitosan biopolymer with reduced methanol crossover for high-performance direct methanol fuel cells application. Polymer 53(13):2643–2651

    Article  CAS  Google Scholar 

  62. Zhou T, He X, Song F, Xie K (2016) Chitosan modified by polymeric reactive dyes containing quanternary ammonium groups as a novel anion exchange membrane for alkaline fuel cells. Int J Electrochem Sci 11(1):590–608

    CAS  Google Scholar 

  63. Li P-C, Liao G-M, Rajeshkumar S, Shih C-M, Yang C-C, Wang D-M, Lue SJ (2016) Fabrication and characterization of chitosan nanoparticle-incorporated quaternized poly (vinyl alcohol) composite membranes as solid electrolytes for direct methanol alkaline fuel cells. Electrochim Acta 187:616–628

    Article  CAS  Google Scholar 

  64. Santamaria M, Pecoraro CM, Di Quarto F, Bocchetta P (2015) Chitosan–phosphotungstic acid complex as membranes for low temperature H2–O2 fuel cell. J Power Sources 276:189–194

    Article  CAS  Google Scholar 

  65. Noroozifar M, Motlagh MK, Kakhki M-S, Roghayeh K-M (2014) Enhanced electrocatalytic properties of Pt–chitosan nanocomposite for direct methanol fuel cell by LaFeO3 and carbon nanotube. J Power Sources 248:130–139

    Article  CAS  Google Scholar 

  66. Linlin M, Mishra AK, Kim NH, Lee JH (2012) Poly (2,5-benzimidazole)–silica nanocomposite membranes for high temperature proton exchange membrane fuel cell. J Membr Sci 411:91–98

    Article  CAS  Google Scholar 

  67. Chang Y-N, Lai J-Y, Liu Y-L (2012) Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells. J Membr Sci 403:1–7

    Google Scholar 

  68. Hooshyari K, Javanbhakt M, Shabanikia A, Enhessari M (2015) Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells. J Power Sources 276:62–72

    Article  CAS  Google Scholar 

  69. Devrim Y, Devrim H, Eroglu I (2016) Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 41(23):10044–10052

    Article  CAS  Google Scholar 

  70. Wu J-F, Lo C-F, Li H-Y, Chang C-M, Liao K-S, Hu C-C, Liu Y-L, Lue S-J (2014) Thermally stable polybenzimidazole/carbon nano-tube composites for alkaline direct methanol fuel cell applications. J Power Sources 246:39–48

    Article  CAS  Google Scholar 

  71. Özdemir Y, Özkan N, Devrim Y (2017) Fabrication and characterization of cross-linked polybenzimidazole based membranes for high temperature PEM fuel cells. Electrochim Acta 245:1–13

    Article  CAS  Google Scholar 

  72. Hogarth WH, Da Costa JD, Lu GM (2005) Solid acid membranes for high temperature proton exchange membrane fuel cells. J Power Sources 142(1):223–237

    Article  CAS  Google Scholar 

  73. Tripathi BP, Shahi VK (2007) SPEEK–zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation. J Colloid Interface Sci 316(2):612–621

    Article  CAS  Google Scholar 

  74. Lim SS, Wan Daud WR, Jahim J, Ghasemi M, Chong PS, Ismail M (2012) Sulfonated poly (ether ether ketone)/poly (ether sulfone) composite membranes as an alternative proton exchange membrane in microbial fuel cells. Int J Hydrogen Energy 37(15):11409–11424

    Article  CAS  Google Scholar 

  75. Jiang Z, Zhao X, Manthiram A (2013) Sulfonated poly (ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells. Int J Hydrogen Energy 38(14):5875–5884

    Article  CAS  Google Scholar 

  76. Heo Y, Im H, Kim J (2013) The effect of sulfonated graphene oxide on sulfonated poly (ether ether ketone) membrane for direct methanol fuel cells. J Membr Sci 425:11–22

    Article  CAS  Google Scholar 

  77. Wang J, Bai H, Zhang H, Zhao L, Yifan Li C (2015) Anhydrous proton exchange membrane of sulfonated poly (ether ether ketone) enabled by polydopamine-modified silica nanoparticles. Electrochim Acta 152:443–455

    Article  CAS  Google Scholar 

  78. Gang M, He G, Li Z, Cao K, Li Z, Yin Y, Wu H, Jiang Z (2016) Graphitic carbon nitride nanosheets/sulfonated poly (ether ether ketone) nanocomposite membrane for direct methanol fuel cell application. J Membr Sci 507:1–11

    Article  CAS  Google Scholar 

  79. Mossayebi Z, Saririchi T, Rowshanzamir S, Parnian MJ (2016) Investigation and optimization of physicochemical properties of sulfated zirconia/sulfonated poly (ether ether ketone) nanocomposite membranes for medium temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 41(28):12293–12306

    Article  CAS  Google Scholar 

  80. Rahnavard A, Rowshanzamir S, Parnian MJ, Amirkhanlou GR (2015) The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells. Energy 82:746–757

    Article  CAS  Google Scholar 

  81. Salarizadeh P, Javanbhakht M, Abdollahi M, Naji L (2013) Preparation, characterization and properties of proton exchange nanocomposite membranes based on poly (vinyl alcohol) and poly (sulfonic acid)-grafted silica nanoparticles. Int J Hydrogen Energy 38(13):5473–5479

    Article  CAS  Google Scholar 

  82. Liew C-W, Ramesh S, Arof A (2014) A novel approach on ionic liquid-based poly (vinyl alcohol) proton conductive polymer electrolytes for fuel cell applications. Int J Hydrogen Energy 39(6):2917–2928

    Article  CAS  Google Scholar 

  83. Beydaghi H, Javanbakht M, Kowsari E (2014) Synthesis and characterization of poly (vinyl alcohol)/sulfonated graphene oxide nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFCs). Ind Eng Chem Res 53(43):16621–16632

    Article  CAS  Google Scholar 

  84. Mollá S, Compañ V (2015) Nanocomposite SPEEK-based membranes for direct methanol fuel cells at intermediate temperatures. J Membr Sci 492:123–136

    Article  CAS  Google Scholar 

  85. Yang J-M, Wang N-C, Chiu H-C (2014) Preparation and characterization of poly (vinyl alcohol)/sodium alginate blended membrane for alkaline solid polymer electrolytes membrane. J Membr Sci 457:139–148

    Article  CAS  Google Scholar 

  86. Huang C-Y, Lin J-S, Pan W-H, Shih C-M, Liu Y-L, Lue S-J (2016) Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes. J Power Sources 303:267–277

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from DST Nanomission, India (SR/NM/NS-20/2014), DST, India (DST-TM-WTI-2K14-213) and SERB-DST, India (YSS/2015/000013) for financial support. We also thank Jain University, India for providing facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahaveer D. Kurkuri or Madhuprasad Kigga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hegde, R.M., Kurkuri, M.D., Kigga, M. (2019). Current Scenario of Nanocomposite Materials for Fuel Cell Applications. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_20

Download citation

Publish with us

Policies and ethics