Skip to main content

Extraction of Cellulose Nanofibers and Their Eco/Friendly Polymer Composites

  • Chapter
  • First Online:
Book cover Sustainable Polymer Composites and Nanocomposites

Abstract

Cellulose nanosize particles extracted from cellulose fibers are now very important materials for almost all aspect of human endeavours. From medicals to the drug, from industrial applications to domestic uses, they have become part of our daily lives. This is because CNP has been found to possess the properties required to replace many of the traditionally known materials such as glass, metals, concrete, synthetic plastics and fibers. The major advantages of CNPs are that they are from natural sources that are renewable; they are environmentally-friendly; they are cost-effective and biodegradable. No doubt, cellulose nanomaterials have come to stay. However, their performance or extent of application is predicated on the source of the cellulose fibers and the process of their extraction and isolation. Since the molecular units of the cellulose fibers are the same, then their extraction processes must be tailored to suit the planned application. To this end, understanding the steps, processes and available methods for the extraction and isolation of CNPs will lead to wider imaginations of possible applications. As of today, the application of these CNPs is at all-time high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee HR, Kim K, Mun SC, Chang YK, Choi SQ (2018) A new method to produce cellulose nanofibrils from microalgae and the measurement of their mechanical strength. Carbohyd Polym 180:276–285

    Article  CAS  Google Scholar 

  2. Mondragon G, Fernandes S, Retegi A, Pena C, Algar I, Eceiza A, Arbelaiz A (2014) A common strategy to extracting cellulose nanoentities from different plants. Ind Crops Prod 55:140–148

    Article  CAS  Google Scholar 

  3. Liu Z, Li X, Xie W, Deng H (2017) Extraction, isolation and characterization of nanocrystalline cellulose from industrial kelp (Laminaria japonica) waste. Carbohyd Polym 173:353–359

    Article  CAS  Google Scholar 

  4. Wang M, Bi W, Huang X, Chen DDY (2016) Ball mill assisted rapid mechanochemical extraction method for natural products from plants. J Chromatogr A 1449:8–16

    Article  CAS  Google Scholar 

  5. Ling Z, Zhang X, Yang G, Takabe K, Xu F (2018) Nanocrystals of cellulose allomorphs have different adsorption of cellulase and subsequent degradation. Ind Crops Prod 112:541–549

    Article  CAS  Google Scholar 

  6. Robles E, Fernández-Rodríguez J, Barbosa AM, Gordobil O, Carreno NLV, Labidi J (2018) Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes. Carbohydr Polym. Available online 6 Jan 2018. ISSN 0144-8617

    Google Scholar 

  7. Das AM, Hazarika MP, Goswami M, Yadav A, Khound P (2016) Extraction of cellulose from agricultural waste using Montmorillonite K-10/LiOH and its conversion to renewable energy: Biofuel by using Myrothecium gramineum. Carbohyd Polym 141:20–27

    Article  CAS  Google Scholar 

  8. Guerrero LC, Guzmán SS, Mendoza JS, Flores CA, Camacho OP (2018) Eco-friendly isolation of cellulose nanoplatelets through oxidation under mild conditions. Carbohyd Polym 181:642–649

    Article  CAS  Google Scholar 

  9. Manzato L, Rabelo LCA, de Souza SM, da Silva CG, Sanches EA, Rabelo D, Mariuba LAM, Simonsen J (2017) New approach for extraction of cellulose from tucumã’s endocarp and its structural characterization. J Mol Struct 1143:229–234

    Article  CAS  Google Scholar 

  10. Liu L, Ju M, Li W, Jiang Y (2014) Cellulose extraction from Zoysia japonica pretreated by alumina-doped MgO in AMIMCl. Carbohyd Polym 113:1–8

    Article  CAS  Google Scholar 

  11. Harini K, Mohan CC, Ramya K, Karthikeyan K, Sukumar M (2018) Effect of Punica granatum peel extracts on antimicrobial properties in Walnut shell cellulose reinforced Bio-thermoplastic starch films from cashew nut shells. Carbohyd Polym 184:231–242

    Article  CAS  Google Scholar 

  12. Bali G, Khunsupat R, Akinosho H, Payyavula RS, Samuel R, Tuskan GA, Kalluri UC, Ragauskas AJ (2016) Characterization of cellulose structure of Populus plants modified in candidate cellulose biosynthesis genes. Biomass Bioenerg 94:146–154

    Article  CAS  Google Scholar 

  13. Nascimento SA, Rezende CA (2018) Combined approaches to obtain cellulose nanocrystals, nanofibrils and fermentable sugars from elephant grass. Carbohyd Polym 180:38–45

    Article  CAS  Google Scholar 

  14. Faruk O, Bledzki AK, Fink HP (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Google Scholar 

  15. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227

    Article  CAS  Google Scholar 

  16. Rezende CA, de Lima MA, Maziero P, de Azevedo ER, Garcia W, Polikarpov I (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4:54

    Article  CAS  Google Scholar 

  17. Wang Z, Yao Z, Zhou J, Zhang J (2017) Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohyd Polym 157:945–952

    Article  CAS  Google Scholar 

  18. Luo J, Semenikhin N, Chang H, Moon RJ, Kumar S (2018) Post-sulfonation of cellulose nanofibrils with a one-step reaction to improve dispersibility. Carbohyd Polym 181:247–255

    Article  CAS  Google Scholar 

  19. Ilyas RA, Sapuan SM, Ishak MR (2018) Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohyd Polym 181:1038–1051

    Article  CAS  Google Scholar 

  20. Xu S, Hossain MM, Lau BBY, To TQ, Rawal R, Aldous L (2017) Total quantification and extraction of shikimic acid from star anise (llicium verum) using solid-state NMR and cellulose-dissolving aqueous hydroxide solutions. Sustain Chem Pharm 5:115–121

    Article  CAS  Google Scholar 

  21. Smyth M, García A, Rader C, Foster EJ, Bras J (2017) Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue. Ind Crops Prod 108:257–266

    Article  CAS  Google Scholar 

  22. Ilangovan M, Guna V, Hu C, Nagananda GS, Reddy N (2018) Curcuma longa L. plant residue as a source for natural cellulose fibers with antimicrobial activity. Ind Crops Prod 112:556–560

    Article  CAS  Google Scholar 

  23. Alila S, Besbes I, Vilar MR, Mutje P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259

    Article  CAS  Google Scholar 

  24. Ng HM, Sin LT, Tee TT, Bee ST, Hui D, Low CY, Rahmat AR (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B Eng 75:176–200

    Article  CAS  Google Scholar 

  25. Zhang K, Sun P, Liu H, Shang S, Song J, Wang D (2016) Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohyd Polym 138:237–243

    Article  CAS  Google Scholar 

  26. El Achaby M, Kassab Z, Barakat A, Aboulkas A (2018) Alfa fibers as viable sustainable source for cellulose nanocrystals extraction: Application for improving the tensile properties of biopolymer nanocomposite films. Ind Crops Prod 112:499–510

    Article  CAS  Google Scholar 

  27. Chien CH, Zhou C, Wei HC, Sing SY, Theodore A, Wu CY, Hsu YM, Birky B (2018) Feasibility test of cellulose filter for collection of sulfuric acid mists. Sep Purif Technol 195:398–403

    Article  CAS  Google Scholar 

  28. Vinayaka DL, Guna V, Madhavi D, Arpitha M, Reddy N (2017) Ricinus communis plant residues as a source for natural cellulose fibers potentially exploitable in polymer composites. Ind Crops Prod 100:126–131

    Article  CAS  Google Scholar 

  29. Sobolciak P, Tanvir A, Popelka A, Moffat J, Mahmoud KA, Krupa I (2017) The preparation, properties and applications of electrospun co-polyamide 6,12 membranes modified by cellulose nanocrystals. Mater Des 132:314–323

    Article  CAS  Google Scholar 

  30. Khoathane MC, Sadiku ER, Agwuncha SC (2015) Chapter 14—Surface modification of natural fiber composites and their potential applications. In: Thakur VK, Singha AS (eds)Surface modification of biopolymers. Wiley, USA, pp 370–400

    Google Scholar 

  31. Zhang DY, Zhang N, Song P, Hao JY, Wan Y, Yao XH, Chen T, Li L (2018) Functionalized cellulose beads with three dimensional porous structure for rapid adsorption of active constituents from Pyrola incarnate. Carbohyd Polym 181:560–569

    Article  CAS  Google Scholar 

  32. Seabra AB, Bernardes JS, Fávaro WJ, Paula AJ, Durán N (2018) Cellulose nanocrystals as carriers in medicine and their toxicities: a review. Carbohyd Polym 181:514–527

    Article  CAS  Google Scholar 

  33. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  Google Scholar 

  34. Tingaut P, Zimmermann T, Sebe G (2012) Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 22(38):20105–20111

    Article  CAS  Google Scholar 

  35. Kargarzadeh H, Loelovich M, Ahmad I, Thormas S, Dufresene A (2017) Methods for extraction of nanocellulose from various sources. In: Kargarzadeh H, Ahmad I, Thormas S, Dufresene A (eds) Handbook of nanocellulose and cellulose nano composite, 1st edn. Wiley VCH

    Google Scholar 

  36. Nascimento DM, Almeida JS, Dias AF, Figueirêdo MCB, Morais JPS, Feitosa JPA, Rosa MF (2014) A novel green approach for the preparation of cellulose nanowhiskers from white coir. Carbohyd Polym 110(2014):456–463

    Article  CAS  Google Scholar 

  37. Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Biores Technol 102(2011):1988–1997

    Article  CAS  Google Scholar 

  38. Lin J, Miao X, Zhang X, Bian F (2017) Controllable generation of renewable nanofibrils from green materials and their application in nanocomposites. In: Thakur VK, Thakur MK, Kessler MR (eds) Handbook of composites from renewable materials. Wiley-Scrivener publishing, 8, pp 61–102

    Google Scholar 

  39. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90(2):735–764

    Article  CAS  Google Scholar 

  40. Cherian BM, Leao AL, de Souza SF, Costa LMM, de Olyveira GM, Kottaisamy M, Nagarajan ER, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohyd Polym 86(2011):1790–1798

    Article  CAS  Google Scholar 

  41. Nascimento DM, Dias AF, Junior CPA, Rosa MF, Morais JPS, Figueiredo MCB (2016) A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part II: environment assessment of technological pathways. Ind Crops and Prod

    Google Scholar 

  42. Kalia S, Dufresne A, Cherian BM, Kaith BS, Averous L, Njuguna J et al (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 1–35

    Google Scholar 

  43. Cherian BM, Leao AL, De Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf by steam explosion. Carbohyd Polym 81:720–725

    Article  CAS  Google Scholar 

  44. Costa LMM, de Olyveira GM, Cherian BM, Leao AL, de Souza SF, Ferreira M (2013) Bionanocomposites from electrospun PVA/pineapple nanofibers/Stryphnodendron adstringens bark extract for medical applications. Ind Crops Prod 41(2013):198–202

    Article  CAS  Google Scholar 

  45. Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2014) Extractio of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohyd Polym 86:1468–1475

    Article  CAS  Google Scholar 

  46. Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527

    Article  CAS  Google Scholar 

  47. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B: Polym Phys 52:791–806

    Article  CAS  Google Scholar 

  48. Li Y, Liu Y, Chen W, Wang Q, Liu Y, Li J, Yu H (2015) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 00:1–8

    Google Scholar 

  49. Luzia F, Fortunati E, Pugliaa D, Lavorgna M, Santulli C, Kenny JM, Torre L (2014) Optimized extraction of cellulose nanocrystals from pristine and carded hemp fibres. Ind Crops Prod 56:175–186

    Article  CAS  Google Scholar 

  50. Cao Y, Wang WH, Wang QW (2013) Application of mechanical models to flax fiber/wood fiber/plastic composites. BioResources 8(3):3276–3288

    Article  Google Scholar 

  51. Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crop Prod 40:232–238

    Article  CAS  Google Scholar 

  52. Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442

    Article  CAS  Google Scholar 

  53. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, RowanS J, Weder C, Thielemans W, Toman M, Renneckar S et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  54. Ahola S, Turon X, Osterberg M, Laine J, Rojas O (2008) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24(20):11592–11599

    Article  CAS  Google Scholar 

  55. Teixeira EM, Bondancia TJ, Teodoro KR, Corrêa AC, Marconcini JM, Mattoso LHC (2011) Sugarcane bagasse whiskers: extraction and characterizations. Ind Crops Prod 33(1):63–66

    Article  CAS  Google Scholar 

  56. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8(10):3276–3278

    Article  CAS  Google Scholar 

  57. Li MC, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3(5):821–832

    Article  CAS  Google Scholar 

  58. Li MC, Wu Q, Song K, Qing Y, Wu Y (2015) Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Appl Mater Interface 7(8):5006–5016

    Article  CAS  Google Scholar 

  59. Li W, Yue JQ, Liu SX (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19(3):479–485

    Google Scholar 

  60. Chen WS, Yu HP, Li Q, Liu YX, Li J (2011) Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter 7(21):10360–10368

    Article  CAS  Google Scholar 

  61. Ioelovich M (2013) Nanoparticles of amorphous cellulose and their properties. Am J Nanosci Nanotechnol 1(1):41–45

    Article  CAS  Google Scholar 

  62. Ioelovich M (2014) Cellulose-nanostructured natural polymer. Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  63. Ioelovich M (2014) Peculiarities of cellulose nanoparticles. Tappi J 13(5):45–52

    CAS  Google Scholar 

  64. Kim CW, Kim DS, Kang SY, Marquez M, Joo YL (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47(14):5097–5107

    Article  CAS  Google Scholar 

  65. Quan SL, Kang SG, Chin IJ (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17(2):223–230

    Article  CAS  Google Scholar 

  66. Stylianopoulos T, Kokonou M, Michael S, Tryfonos A, Rebholz C, Odysseos AD, Doumanidis C (2012) Tensile mechanical properties and hydraulic permeabilities of electrospun cellulose acetate fiber meshes. J Biomed Mater Res 100(8):2222–2230

    Article  CAS  Google Scholar 

  67. Abdul Khalil HPS, Bhat AH, Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87(2):963–979

    Google Scholar 

  68. Abdul Khalil HPS, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohyd Polym 99:649–665

    Google Scholar 

  69. Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6(2):612–626

    Article  CAS  Google Scholar 

  70. Morais JPS, Rosa MF, de Souza FMM, Nascimento LD, do Nascimento DM, Cassales AR (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohyd Polym 91(1):229–235

    Google Scholar 

  71. Emanuel MF, Ricardo AP, Mano JF, Reisa RL (2013) Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 38(10–11):1415–1441

    Google Scholar 

  72. Imai T, Sugiyama J (1998) Nanodomains of Iα and Iβ cellulose in algal microfibrils. Macromolecules 31(18):6275–6279

    Article  CAS  Google Scholar 

  73. Kim NH, Herth W, Vuong R, Chanzy H (1996) The cellulose system in the cell wall of micrasterias. J Struct Biol 117(3):195–203

    Article  CAS  Google Scholar 

  74. Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985) Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta 166(2):161–168

    Article  CAS  Google Scholar 

  75. Hua K, Stromme M, Mihranyam A, Ferraz N (2015) Nanocellulose from green algae modulates the in vitro inflammatory response of monocytes/macrophages. Cellulose 22:3673–3688

    Article  CAS  Google Scholar 

  76. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9(1):57–65

    Article  CAS  Google Scholar 

  77. Iwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromol 12(3):831–836

    Article  CAS  Google Scholar 

  78. Kimura S, Itoh T (1996) New cellulose synthesizing complexes (terminal complexes) involved in animal cellulose biosynthesis in the tunicate Metandrocarpa uedai. Protoplasma 194(3–4):151–163

    Article  CAS  Google Scholar 

  79. Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206

    Article  CAS  Google Scholar 

  80. Sturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromol 6(2):1055–1061

    Article  CAS  Google Scholar 

  81. Zhao Y, Zhang Y, Lindström ME, Li J (2014) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 117:286–296

    Article  CAS  Google Scholar 

  82. Ferrer A, Filpponen I, Rodríguez A, Laine J, Rojas OJ (2012) Valorization of residual Empty palm fruit bunch fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255

    Article  CAS  Google Scholar 

  83. Feng YH, Cheng TY, Yang WG, Ma PT, He HZ, Yin XC, Yu XX (2018) Characteristics and environmentally friendly extraction of cellulose nanofibrils from sugarcane bagasse. Ind Crops Prod 111:285–291

    Article  CAS  Google Scholar 

  84. Abdullah MA, Nazir MS, Raza MR, WahjoediB A, Yussof AW (2016) Autoclave and ultra-sonication treatments of oil palm empty fruit bunch fibers for cellulose extraction and its polypropylene composite properties. J Clean Prod 126:686–697

    Article  CAS  Google Scholar 

  85. Miao X, Lin J, Tian F, Li X, Bian F, Wang J (2016) Cellulose nanofibrils extracted from the byproduct of cotton plant. Carbohyd Polym 136:841–850

    Article  CAS  Google Scholar 

  86. Trovatti E, Fernandes SCM, Rubatat L, da-Silva-Perez D, Freire CSR, Silvestre AJD et al (2012) Pullulane nanofibrillated cellulose composite films with improved thermal and mechanical properties. Compos Sci Technol 72:1556–1561

    Google Scholar 

  87. Besbesa I, Vilar MR, Boufi S (2011) Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohyd Polym 86:1198–1206

    Article  CAS  Google Scholar 

  88. Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohyd Polym 81:83–92

    Article  CAS  Google Scholar 

  89. Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866

    Article  CAS  Google Scholar 

  90. Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4(2):626–639

    CAS  Google Scholar 

  91. Shin HK, Jeun JP, Kim HB, Kang PH (2012) Isolation of cellulose fibers from kenaf using electron beam. Radiat Phys Chem 81:936–940

    Article  CAS  Google Scholar 

  92. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99

    Article  CAS  Google Scholar 

  93. Sonia A, Dasan KP, Alex R (2013) Celluloses microfibres (CMF) reinforced poly(ethylene-co-vinyl acetate) (EVA) composites: dynamic mechanical, gamma and thermal ageing studies. Eng Chem 228:1214–1222

    Article  CAS  Google Scholar 

  94. Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557–565

    Article  CAS  Google Scholar 

  95. Chen WS, Yu HP, Liu YX, Chen P, Zhang MX, Hai YF (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohyd Polym 2011:1804–1811

    Article  CAS  Google Scholar 

  96. Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohyd Polym 79:1086–1093

    Article  CAS  Google Scholar 

  97. Zainuddin SYZ, Ahmad I, Kargarzadeh H, Abdullah I, Dufresne A (2013) Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohyd Polym 92:2299–2305

    Article  CAS  Google Scholar 

  98. Maiti S, Jayaramudu J, Dasa K, Reddy SM, Sadiku R, Ray SS et al (2012) Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohyd Polym 98:562–567

    Article  CAS  Google Scholar 

  99. Aranguren MI, Marcovich NE, Salgueiro W, Somoza A (2013) Effect of the nanocellulose content on the properties of reinforced polyurethanes. A study using mechanical tests and positron annihilation spectroscopy. Polym Test 32:115–122

    Article  CAS  Google Scholar 

  100. Tee TT, Sin LT, Gobinath R, Bee ST, Hui D, Rahmat AR et al (2013) Investigation of nano-size montmorillonite on enhancing polyvinyl alcohol-starch blends prepared via solution cast approach. Compos Part B 47:238–247

    Article  CAS  Google Scholar 

  101. Shi J, Shi SQ, Barnes HM, Pittman JCU (2011) A chemical process for preparing cellulosic fibers hierarchically from kenaf bast fibers. BioResources 6(1):879–890

    CAS  Google Scholar 

  102. Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohyd Polym 82:329–336

    Article  CAS  Google Scholar 

  103. Bai W, Holbery J, Li KC (2009) A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16(3):455–465

    Article  CAS  Google Scholar 

  104. Filson PB, Dawson-Andoh BE (2009) Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour Technol 100(7):2259–2264

    Article  CAS  Google Scholar 

  105. Araki J, Wada M, Kuga S, Okano T (1998) Low properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142(1):75–82

    Google Scholar 

  106. Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1(12):3938–3944

    Article  CAS  Google Scholar 

  107. Acharya SK, Mishra P, Mehar SK (2011) Effect of surface treatment on the mechanical properties of bagasse fiber reinforced polymer composite. Bio-Resources 6(3):3155–3165

    CAS  Google Scholar 

  108. Karimi S, Tahir P, Karimi A, Dufresne A, Abdulkhani A (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohyd Polym 101:878–885

    Article  CAS  Google Scholar 

  109. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  110. Ruiz E, Cara C, Manzanares P, Ballesteros M, Castro E (2008) Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzyme Microb Technol 42(2):160–166

    Article  CAS  Google Scholar 

  111. de Souza Lima MM, Borsali R (2002) Static and dynamic light scattering from polyelectrolyte microcrystal cellulose. Langmuir 18(4):992–996

    Article  CAS  Google Scholar 

  112. Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly (acrylic acid). Carbohyd Polym 87:2038–2045

    Article  CAS  Google Scholar 

  113. Zaini LH, Jonoobi M, Tahir PMD, Karimi S (2013) Isolation and characterization of cellulose whiskers from kenaf (Hibiscus cannabinus L.) bast fibers. J Biomater Nanobiotechnol 4:37–44

    Article  CAS  Google Scholar 

  114. Silverio HA, Neto WPF, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436

    Article  CAS  Google Scholar 

  115. Follain N, Belbekhouche S, Bras J, Siqueira G, Marais S, Dufresne A (2013) Water transport properties of bio-nanocomposites reinforced by Luffa cylindrical cellulose nanocrystals. Membr Sci 427:218–229

    Article  CAS  Google Scholar 

  116. Liu HY, Liu D, Yao F, Wu QL (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101:5685–5692

    Article  CAS  Google Scholar 

  117. Espino-Perez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144–3154

    Article  CAS  Google Scholar 

  118. Peng YC, Gardner DJ, Han YS (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102

    Article  CAS  Google Scholar 

  119. Jiang SH, Duan GG, Scheobel J, Agarwal S, Greiner A (2013) Short electrospun polymeric nanofibers reinforced polyimide nanocomposites. Compos Sci Technol 88:57–61

    Article  CAS  Google Scholar 

  120. Neto WPF, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue—Soy hulls. Ind Crops Prod 42:480–488

    Article  CAS  Google Scholar 

  121. Besbes I, Rei Vilar M, Boufi S (2011) Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohyd Polym 86:1198–1206

    Article  CAS  Google Scholar 

  122. Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohyd Polym 84:975–983

    Article  CAS  Google Scholar 

  123. El Achaby M, El Miri N, Aboulkas A, Zahouily M, Bilal E, Barakat A, Solhy A (2017) Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int J Biol Macromol 96:340–352

    Article  CAS  Google Scholar 

  124. El Miri N, Abdelouahdi K, Barakat A, Zahouily M, Fihri A, Solhy A, El Achaby M (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167

    Article  CAS  Google Scholar 

  125. El Miri N, El Achaby M, Fihri A, Larzek M, Zahouily M, Abdelouahdi K, Barakat A, Solhy A (2016) Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites. Carbohydr Polym 137:239–248

    Article  CAS  Google Scholar 

  126. Teodoro KBR, Teixeira EM, Corrêa AC, Campos A, Marconcini JM, Mattoso LHC (2011) Whiskers from sisal fibers obtained under different acid hydrolysis conditions: effect of time and temperature of extraction. Polêmeros 21(4):280–285

    Article  CAS  Google Scholar 

  127. Siqueira G, Abdillahi H, Bras J, Dufresne A (2010) High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17(2):289–298

    Article  CAS  Google Scholar 

  128. Silvério HA, Neto WPF, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436

    Article  CAS  Google Scholar 

  129. Islam MT, Alam MM, Zoccola M (2013) Review on modification of nanocellulose for application in composites. Int J Innovative Res Sci Eng Technol 2(10):5451

    Google Scholar 

  130. Gandolfi S, Ottolina G, Riva S, Fantoni GP, Patel I (2013) Completechemical analysis of carmagnola hemp hurds and structural features of its components. BioResources 8:2641–2656

    Article  Google Scholar 

  131. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603

    Article  CAS  Google Scholar 

  132. Owonubi SJ, Agwuncha SC, Mukwevho E, Aderibigbe BA, Sadiku ER, Biotidara OF, Varaprasad K (2017) Application of hydrogel biocomposites for multiple drug delivery. In: Handbook of composites from renewable materials, vol 6: Nanocomposites: advance applications. Scrivener Publishing, pp 139–166

    Google Scholar 

  133. Anirudhan TS, Rejeena SR (2015) Biopolymer-based stimuli-sensitive functionalized graft copolymers as controlled drug delivery systems. In: Thakur VK, Singha AS (eds) Surface modification of biopolymers. Wiley, USA, pp 291–334

    Google Scholar 

  134. Zhao Q, Li B (2008) pH-controlled drug loading and release from biodegradable micro capsules. Nanomedicine 4:302–310

    Article  CAS  Google Scholar 

  135. Tsukagoshi T, Kondo Y, Yoshino N (2007) Preparation of thin polymer film with dontrolled drug release. Colloids Surf B Biointerfaces 57:219–225

    Article  CAS  Google Scholar 

  136. Charreau H, Foresti ML, Vázquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56–80

    Article  CAS  Google Scholar 

  137. Plackett DV, Letchford K, Jackson JK, Burt HM (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Pap Res J 29:105–118

    Article  CAS  Google Scholar 

  138. Abitbol T, Palermo A, Moran-Mirabal JM, Cranston ED (2013) Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents. Biomacromol 14:3278–3284

    Article  CAS  Google Scholar 

  139. Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomed 6:321–330

    CAS  Google Scholar 

  140. Qing WX, Wang Y, Wang YY, Zhao DB, Liu XH, Zhu JH (2016) The modified nanocrystalline cellulose for hydrophobic drug delivery. Appl Surf Sci 366:404–409

    Article  CAS  Google Scholar 

  141. Alkilany AM, Murphy C (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313

    Article  CAS  Google Scholar 

  142. Feese E, Sadeghifar H, Gracz HS, Argyropoulos DS, Ghiladi RA (2011) Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization: and antimicrobial properties. Biomacromol 12:3528–3539

    Article  CAS  Google Scholar 

  143. Carpenter BL, Feese E, Sadeghifar H, Argyropoulos DS, Ghiladi RA (2012) Porphyrin-cellulose nanocrystals: a photobactericidal material that exhibits broad spectrum antimicrobial activity. J Photochem Photobiol 88:527–536

    Article  CAS  Google Scholar 

  144. Yallapu MM, Dobberpuhl MR, Maher DM, Jaggi M, Chauhan SC (2012) Design of curcumin loaded cellulose nanoparticles for prostate cancer. Curr Drug Metab 13:120–128

    Article  CAS  Google Scholar 

  145. Dash R, Ragauskas AJ (2012) Synthesis of a novel cellulose nanowhisker-based drug delivery system. RCS Adv 2:3403–3409

    CAS  Google Scholar 

  146. Zhang L, Li Q, Zhou J, Zhang L (2012) Synthesis and photophysical behavior of pyrene-bearing cellulose nanocrystals for Fe3+ sensing. Macromol Chem Phys 212:1612–1617

    Article  CAS  Google Scholar 

  147. Drogat N, Granet R, Le Morvan C, Bégaud-Grimaud G, Krausz P, Sol V (2012) Chlorin-PEI-labeled cellulose nanocrystals: synthesis: characterization and potential application in PDT. Bioorg Med Chem Lett 22:3648–3652

    Article  CAS  Google Scholar 

  148. Akhlaghi SP, Berry RC, Tam KC (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20:1746–1747

    Article  CAS  Google Scholar 

  149. Dong S, Cho HJ, Lee YW, Roman M (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromol 15:1560–1567

    Article  CAS  Google Scholar 

  150. Tang L, Huang B, Li T, Lu Q, Chen X (2014) Functionalized cellulose nanocrystals as a carrier for colon-targeted drug delivery system. Supercond Sci Technol 32:22–28

    CAS  Google Scholar 

  151. Colacino KR, Arena CB, Dong S, Roman M, Davalos RV, Lee YW (2015) Folate conjugated cellulose nanocrystals potentiate irreversible electroporation-induced cytotoxicity for the selective treatment of cancer cells. Technol Cancer Res Treat 14:757–766

    Article  CAS  Google Scholar 

  152. Lahiji RR, Boluk Y, McDermott M (2012) Adhesive surface interactions of cellulose nanocrystals from different sources. J Mater Sci 47:3961–3970

    Article  CAS  Google Scholar 

  153. Cao J, Peng LQ, Du LJ, Zhang QD, Xu JJ (2017) Ultrasound-assisted ionic liquid-based micellar extraction combined with microcrystalline cellulose as sorbent in dispersive microextraction for the determination of phenolic compounds in propolis. Anal Chim Acta 963:24–32

    Article  CAS  Google Scholar 

  154. Siaueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10(2):425–432

    Article  CAS  Google Scholar 

  155. Mcallister S (2005) Analysis and comparison of sustainable water filters. United Nations, 22

    Google Scholar 

  156. Hassan E, Hassan M, Abou-zeid R, Berglund L, Oksman K (2017) Use of bacterial cellulose and crosslinked cellulose nanofibers membranes for removal of oil from oil-in-water emulsions. Polymers 9(9). https://doi.org/10.3390/polym9090388

  157. Voisin H, Bergström L, Liu P, Mathew A (2017) Nanocellulose-based materials for water purification. Nanomaterials 7(3):57. https://doi.org/10.3390/nano7030057

    Article  CAS  Google Scholar 

  158. El-Nahas AM, Salaheldin TA, Zaki T, El-Maghrabi HH, Marie AM, Morsy SM et al (2017) Functionalized cellulose-magnetite nanocomposite catalysts for efficient biodiesel production. Chem Eng J 322:167–180

    Article  CAS  Google Scholar 

  159. Lee M, Heo MH, Lee HH, Kim YW, Shin J (2017) Tunable softening and toughening of individualized cellulose nanofibers-polyurethane urea elastomer composites. Carbohyd Polym 159:125–135

    Article  CAS  Google Scholar 

  160. Xu D, Xiao X, Cai J, Zhou J, Zhang L (2015) Highly rate and cycling stable electrode materials constructed from polyaniline/cellulose nanoporous microspheres. J Mater Chem A 3:16424–16429

    Article  CAS  Google Scholar 

  161. Zhang J, Li L, Li Y, Yang C (2017) Microwave-assisted synthesis of hierarchical mesoporous nano-TiO2/cellulose composites for rapid adsorption of Pb2+. Chem Eng J 313:1132–1141

    Article  CAS  Google Scholar 

  162. Chesney A, Barnwell P, Stonehouse DF, Steel PG (2000) Amino-derivatised beaded cellulose gels: novel accessible and biodegradable scavenger resins for solution phase combinatorial synthesis. Green Chem 2:57–62

    Article  CAS  Google Scholar 

  163. Chesney A, Steel PG, Stonehouse DF (2000) High loading cellulose based poly (alkenyl) resins for resin capture applications in halogenation reactions. J Comb Chem 2:434–437

    Article  CAS  Google Scholar 

  164. Weber V, Linsberger I, Ettenauer M, Loth F, Höyhtyä M, Falkenhagen D (2005) Development of specific adsorbents for human tumor necrosis factor-α: influence of antibody immobilization on performance and biocompatibility. Biomacromol 6:1864–1870

    Article  CAS  Google Scholar 

  165. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  166. Korecká L, Bílková Z, Holèapek M, Královský J, Benes M, Lenfeld J et al (2004) Utilization of newly developed immobilized enzyme reactors for preparation and study of immunoglobulin G fragments. J Chromatogr B 808:15–24

    Article  CAS  Google Scholar 

  167. Volkert B, Wolf B, Fischer S, Li N, Lou C (2009) Application of modified bead cellulose as a carrier of active ingredients. Macromol Symp 280:130–135

    Article  CAS  Google Scholar 

  168. He Z, Song H, Cui Y, Zhu W, Du K, Yao S (2014) Porous spherical cellulose carrier modified with polyethyleneimine and its adsorption for Cr(III) and Fe(III) from aqueous solutions. Chin J Chem Eng 22:984–990

    Article  CAS  Google Scholar 

  169. Monier M, Akl MA, Ali WM (2014) Modification and characterization of cellulose cotton fibers for fast extraction of some precious metal ions. Int J Biol Macromol 66:125–134

    Article  CAS  Google Scholar 

  170. Wang L, Li J (2013) Adsorption of C. I. reactive red 228 dye from aqueous solution by modified cellulose from flax shive: Kinetics, equilibrium, and thermodynamics. Ind Crops Prod 42:153–158

    Article  CAS  Google Scholar 

  171. Zhou Y, Min Y, Qiao H, Huang Q, Wang E, Ma T (2015) Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride. Int J Biol Macromol 74:271–277

    Article  CAS  Google Scholar 

  172. Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromol 14(1):248–253

    Article  CAS  Google Scholar 

  173. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71:343–364

    Article  CAS  Google Scholar 

  174. Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9(6):1579–1585

    Article  CAS  Google Scholar 

  175. Rodionova G, Lenes M, Eriksen O, Gregersen O (2010) Surface chemical modification of microfibrillated cellulose: Improvement of barrier properties for packaging applications. Cellulose 18(1):127–134

    Article  CAS  Google Scholar 

  176. Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198

    Article  CAS  Google Scholar 

  177. Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574

    Article  CAS  Google Scholar 

  178. Aulin C, Netrval J, Wågberg L, Lindström T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6(14):3298–3305

    Article  CAS  Google Scholar 

  179. Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Biores Technol 101(15):5961–5968

    Article  CAS  Google Scholar 

  180. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17(4):835–848

    Article  CAS  Google Scholar 

  181. Chinga-Carrasco G, Syverud K (2010) Computer-assisted quantification of the multi-scale structure of films made of nanofibrillated cellulose. J Nanopart Res 12:841–851

    Article  CAS  Google Scholar 

  182. Blaker JJ, Lee KY, Li X, Menner A, Bismarck A (2009) Renewable nanocomposite polymer foams synthesized from Pickering emulsion templates. Roy Soc Chem 11(9):1321–1326

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Agwuncha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agwuncha, S.C., Anusionwu, C.G., Owonubi, S.J., Sadiku, E.R., Busuguma, U.A., Ibrahim, I.D. (2019). Extraction of Cellulose Nanofibers and Their Eco/Friendly Polymer Composites. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_2

Download citation

Publish with us

Policies and ethics