Skip to main content

Synthesis, Characterization, and Applications of Hemicellulose Based Eco-friendly Polymer Composites

  • Chapter
  • First Online:
Sustainable Polymer Composites and Nanocomposites

Abstract

Cellulosic materials are getting more and more attention in science and technology due to their biodegradability, renewability, high strength and stiffness, low cost and ecologically friendly formation. Biodegradable green composites from natural components provide a potential and commercial alternative to petroleum-based composite materials without compromising strength, stiffness and abrasion resistance properties to a variety of industrial and other applications. Of natural polymers, lignocellulosic materials are likely to be very important materials as they can be converted into biofuels and bioproducts. Mainly found in lignocellulose, hemicelluloses are the second most abundant renewable material in nature, easy to use, has film-forming features, good biocompatibility, and biodegradability. In this chapter, the production and characterization of environmentally friendly nanocomposites containing hemicelluloses and their use in applications such as food packaging, medical applications, gas barriers have been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelwahab NA, Al-Ashkar EA, Abdel-Ghaffara MA (2015) Preparation and characterization of eco-friendly poly(p-phenylenediamine) and its composite with chitosan for removal of copper ions from aqueous solutions. Trans Nonferrous Met Soc China 25:3808–3819

    Article  CAS  Google Scholar 

  2. Abrahamson JT, Sen F, Sempere B et al (2013) Excess thermopower and the theory of thermopower waves. ACS Nano 7(8):6533–6544

    Article  CAS  Google Scholar 

  3. Aday B, Yıldız Y, Ulus R et al (2016) One-pot, efficient and green synthesis of acridinedione derivatives using highly monodisperse platinum nanoparticles supported with reduced graphene oxide. New J Chem 40:748–754

    Article  CAS  Google Scholar 

  4. Akocak S, Sen B, Lolak N et al (2017) One-pot three-component synthesis of 2-amino-4H-chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Struct Nano-Objects 11:25–31

    Article  CAS  Google Scholar 

  5. Alén R (2000) Structure and chemical composition of wood. In: Stenius P (ed) Forest products chemistry. Fapet Oy, Helsinki, pp 12–57

    Google Scholar 

  6. Ayranci R, Baskaya G, Guzel M et al (2017) Carbon-based nanomaterials for high-performance optoelectrochemical systems. Chem Select 2(4):1548–1555

    CAS  Google Scholar 

  7. Ayranci R, Baskaya G, Guzel M et al (2017) Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: a comparative investigation. Nano-Struct Nano-Objects 11:13–19

    Article  CAS  Google Scholar 

  8. Baillie C (2004) Polymer composites and the environment. Green Compos 1–8

    Google Scholar 

  9. Baskaya G, Esirden I, Erken E et al (2017) Synthesis of 5-substituted-1H-tetrazole derivatives using monodisperse carbon black decorated Pt nanoparticles as heterogeneous nanocatalysts. J Nanosci Nanotechnol 17:1992–1999

    Article  CAS  Google Scholar 

  10. Baskaya G, Yıldız Y, Savk A et al (2017) Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosens Bioelectron 91:728–733

    Article  CAS  Google Scholar 

  11. Batra SK (1985) Handbook of fiber science and technology. In: Lewin M, Pearce EM (eds) Fiber chemistry, vol IV. Marcel Dekker, New York, pp 727–808

    Google Scholar 

  12. Bloor D, Donnelly K, Hands PJ, Laughlin P, Lussey D (2005) A metal–polymer composite with unusual properties. J Phys D Appl Phys 38:2851–2860

    Article  CAS  Google Scholar 

  13. Bozkurt S, Tosun B, Sen B et al (2017) A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles. Anal Chim Acta 989C:88–94

    Article  CAS  Google Scholar 

  14. Celik B, Baskaya G, Karatepe O et al (2016) Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB. Int J Hydrogen Energy 41:5661–5669

    Article  CAS  Google Scholar 

  15. Celik B, Erken E, Eris S et al (2016) Highly monodisperse Pt(0)@AC NPs as highly efficient and reusable catalysts: the effect of the surfactant on their catalytic activities in room temperature dehydrocoupling of DMAB. Catal Sci Technol 6:1685–1692

    Article  CAS  Google Scholar 

  16. Celik B, Kuzu S, Erken E et al (2016) Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 alcohol oxidation. Int J Hydrogen Energy 41:3093–3101

    Article  CAS  Google Scholar 

  17. Celik B, Yildiz Y, Erken E et al (2016) Monodisperse palladium-cobalt alloy nanoparticles assembled on poly (N-vinyl-pyrrolidone) (PVP) as highly effective catalyst for the dimethylammine borane (DMAB) dehydrocoupling. RSC Adv 6:24097–24102

    Article  CAS  Google Scholar 

  18. Chen GG, Qi XM, Guan Y et al (2016) High strength hemicellulose-based nanocomposite film for food packaging applications. ACS Sustain Chem Eng 4:1985–1993

    Article  CAS  Google Scholar 

  19. Chen L, Wu P, Chen M et al (2018) Preparation and characterization of the eco-friendly chitosan/vermiculite biocomposite with excellent removal capacity for cadmium and lead. Appl Clay Sci https://doi.org/10.1016/j.clay.2017.12.050

  20. Chen T, Dai L (2013) Carbon nanomaterials for high-performance supercapacitors. Mater Today 16:272–280

    Article  CAS  Google Scholar 

  21. Ciolacu D, Popa VI (2011) Cellulose allomorphs: structure. Accessibility and reactivity. Nova Science Publisher, New York, pp 1–3 (Chapter 1)

    Google Scholar 

  22. Clark J, Deswarte F (2008) Introduction to chemicals from biomass. Wiley, UK

    Book  Google Scholar 

  23. Dasdelen Z, Yıldız Y, Eris S et al (2017) Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybride material for methanol oxidation reaction. Appl Catal B 219C:511–516

    Article  CAS  Google Scholar 

  24. Davachi SM, Shekarabi AS (2018) Preparation and characterization of antibacterial, eco-friendly edible nanocomposite films containing Salvia macrosiphon and nanoclay. Int J Biol Macromol 113:66–72

    Article  CAS  Google Scholar 

  25. Demir E, Savk A, Sen B et al (2017) A novel monodisperse metal nanoparticles anchored graphene oxide as counter electrode for dye-sensitized solar cells. Nano-Struct Nano-Objects 12:41–45

    Article  CAS  Google Scholar 

  26. Demir E, Sen B, Sen F (2017) Highly efficient nanoparticles and f-MWCNT nanocomposites-based counter electrodes for dye-sensitized solar cells. Nano-Struct Nano-Objects 11:39–45

    Article  CAS  Google Scholar 

  27. Demirci T, Celik B, Yıldız Y et al (2016) One-pot synthesis of hantzsch dihydropyridines using highly efficient and stable PdRuNi@GO catalyst. RSC Adv 6:76948–76956

    Article  CAS  Google Scholar 

  28. Divsalar E, Tajik H, Moradi M et al (2018) Characterization of cellulosic paper coated with chitosan-zinc oxidenanocomposite containing nisin and its application in packaging of UF cheese. Int J Biol Macromol 109:1311–1318

    Article  CAS  Google Scholar 

  29. Ebringerova A, Hromadkova Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67

    Article  CAS  Google Scholar 

  30. Eris S, Daşdelen Z, Sen F (2018) Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells. J Colloid Interface Sci 513:767–773

    Article  CAS  Google Scholar 

  31. Eris S, Daşdelen Z, Sen F (2018) Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in-situ synthesis for methanol electrooxidation. Int J Hydrogen Energy 43(1):385–390

    Article  CAS  Google Scholar 

  32. Eris S, Daşdelen Z, Yıldız Y et al (2018) Nanostructured polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for methanol oxidation. Int J Hydrogen Energy 43(3):1337–1343

    Article  CAS  Google Scholar 

  33. Erken E, Esirden İ, Kaya M et al (2015) A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation. RSC Adv 5:68558–68564

    Article  CAS  Google Scholar 

  34. Erken E, Pamuk H, Karatepe O et al (2016) New Pt(0) nanoparticles as highly active and reusable catalysts in the C1–C3 alcohol oxidation and the room temperature dehydrocoupling of dimethylamine-borane (DMAB). J Cluster Sci 27:9

    Article  CAS  Google Scholar 

  35. Erken E, Yildiz Y, Kilbas B et al (2016) Synthesis and characterization of nearly monodisperse Pt nanoparticles for C1 to C3 alcohol oxidation and dehydrogenation of dimethylamine-borane (DMAB). J Nanosci Nanotechnol 16:5944–5950

    Article  CAS  Google Scholar 

  36. Escalante A, Gonçalves A, Bodi A et al (2012) Flexible oxygen barrier films from spruce xylan. Carbohydr Polym 87:2381–2387

    Article  CAS  Google Scholar 

  37. Esirden İ, Erken E, Kaya M et al (2015) Monodisperse Pt NPs@rGO as highly efficient and reusable heterogeneous catalysts for the synthesis of 5-substituted 1H-tetrazole derivatives. Catal Sci Technol 5:4452–4457

    Article  CAS  Google Scholar 

  38. Fang JM, Sun RC, Fowler P et al (1999) Esterification of wheat straw hemicelluloses in the N,N-dimethylformamide/lithium cloride homogeneous system. J Appl Polym Sci 74:2301–2311

    Article  CAS  Google Scholar 

  39. Fang JM, Sun RC, Tomkinson J et al (2000) Acetylation of wheat straw hemicellulose B in a new non-aqueous swelling system. Carbohydr Polym 41:379–387

    Article  CAS  Google Scholar 

  40. Fincher GB, Stone BA (1986) Cell walls and their components in cereal grain technology. In: Pomeranz Y (ed) Advances in cereal science and technology. American Association of Cereal Chemists Inc., St Paul, pp 207–295

    Google Scholar 

  41. Galindo-Rosales FJ, Martínez-Aranda S, Campo-Deaño L (2015) CorkSTFlfluidics—a novel concept for the development of eco-friendly light-weight energy absorbing composites. Mater Des 82:326–334

    Article  Google Scholar 

  42. Giraldo JP, Landry MP, Faltermeier SM et al (2014) A nanobionic approach to augment plant photosynthesis and biochemical sensing using targeted nanoparticles. Nat Mater 13:400–408

    Article  CAS  Google Scholar 

  43. Goksu EI, Karamanlioglu M, Bakir U et al (2007) Production and characterization of films from cotton stalk xylan. J Agric Food Chem 55:10685–10691

    Article  CAS  Google Scholar 

  44. Goksu EI, Karamanlioglu M, Bakir U et al (2007) Production and characterization of films from cotton stalk xylan. J Agric Food Chem 55(26):10685–10691

    Article  CAS  Google Scholar 

  45. Goksu H, Celik B, Yıldız Y et al (2016) Superior monodisperse CNT-supported CoPd (CoPd@CNT) nanoparticles for selective reduction of nitro compounds to primary amines with NaBH4 in aqueous medium. Chem Select 1(10):2366–2372

    Google Scholar 

  46. Goksu H, Yıldız Y, Celik B et al (2016) Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of reduced graphene oxide furnished platinum nanocatalyst. Catal Sci Technol 6:2318–2324

    Article  CAS  Google Scholar 

  47. Goksu H, Yıldız Y, Celik B et al (2016) Highly efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. Chem Select 1(5):953–958

    Google Scholar 

  48. Graupner N, Ziegmann G, Wilde F et al (2016) Procedural influences on compression and injection moulded cellulose fibre-reinforced polylactide (PLA) composites: influence of fibre loading, fibre length, fibre orientation and voids. Compos Part an Appl Sci Manuf 81:158–171

    Article  CAS  Google Scholar 

  49. Grondahl M, Eriksson L, Gatenholm P (2004) Material properties of plasticized hardwood xylans for potential application as oxygen barrier films. Biomacromol 5(4):1528–1535

    Article  CAS  Google Scholar 

  50. Grondahl M, Gustafsson A, Gatenholm P (2006) Surface- and bulk-modified galactoglucomannan hemicellulose films and film laminates for versatile oxygen barriers. Macromolecules 39:2718–2721

    Article  CAS  Google Scholar 

  51. Hansen NM, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromol 9:1493–1505

    Article  CAS  Google Scholar 

  52. Hartman J, Albertsson AC, Sjoberg J (2006) Surface- and bulk-modified galactoglucomannan hemicellulose films and film laminates for versatile oxygen barriers. Biomacromol 7:1983–1989

    Article  CAS  Google Scholar 

  53. Hoije A, Sternemalm E, Heikkinen S et al (2008) Material properties of films from enzymatically tailored arabinoxylans. Biomacromol 9:2042–2047

    Article  CAS  Google Scholar 

  54. Izydorczyk MS, Biliaderis CG (1995) Cereal arabinoxylanase: advances in structure and physicochemical properties. Carbohydr Polym 28:33–48

    Article  CAS  Google Scholar 

  55. Karatepe O, Yildiz Y, Pamuk H et al (2016) Enhanced electro catalytic activity and durability of highly mono disperse Pt@PPy-PANI nanocomposites as a novel catalyst for electro-oxidation of methanol. RSC Adv 6:50851–50857

    Article  CAS  Google Scholar 

  56. Kathiresan M, Pandiarajan P, Senthamaraikannan P et al (2016) Physicochemical properties of new cellulosic artisditahystrix leaf fiber. Int J Polym Anal Charact 21(6):663–668

    Article  CAS  Google Scholar 

  57. Kayseriliolu BS, Bakir U, Yilmaz L et al (2003) Use of xylan, an agricultural by-product, in wheat gluten based biodegradable films: mechanical, solubility and water vapor transfer rate properties. Bioresour Technol 87:239–246

    Article  Google Scholar 

  58. Khalil HPSA, Davoudpour Y, Islam MN et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  CAS  Google Scholar 

  59. Kozłowski R, Władyka-Przybylak M (2008) Flammability and fire resistance of composites reinforced by natural fibers. Polym Adv Technol 19:446–453

    Article  CAS  Google Scholar 

  60. Lawther JM, Sun RC, Banks WB (1995) Extraction, fractionation, and characterization of structural polysaccharides from wheat straw. J Agric Food Chem 43:667–675

    Article  CAS  Google Scholar 

  61. Li Y, Liu H, Dai K et al (2015) Tuning of vapor sensing behaviors of eco-friendly conductive polymercomposites utilizing ramie fiber. Sens Actuators B 221:1279–1289

    Article  CAS  Google Scholar 

  62. Lin Q, Li H, Ren J (2017) Production of xylooligosaccharides by microwave-induced, organic acid-catalyzed hydrolysis of different xylan-type hemicelluloses: optimization by response surface methodology. Carbohyd Polym 157:214–225

    Article  CAS  Google Scholar 

  63. Liu W, Luo L, Xu S, Zhao H (2014) Effect of fiber volume fraction on crack propagation rate of ultra-high toughness cementitious composites. Eng Fract Mech 124:52–63

    Article  Google Scholar 

  64. Luo Z, Zhang J, Zhuang C et al (2016) An eco-friendly composite adsorbent for efficient removal of Cu2+ from aqueous solution. J Taiwan Inst Chem Eng 60:479–487

    Article  CAS  Google Scholar 

  65. Manimaran P, Senthamaraikannan P, Sanjay MR et al (2018) Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohyd Polym 181:650–658

    Article  CAS  Google Scholar 

  66. Mikkonen KS, Rita H, Helen H et al (2007) Effect of polysaccharide structure on mechanical and thermal properties of galactomannan-based films. Biomacromol 8(10):3198–3205

    Article  CAS  Google Scholar 

  67. Mittal G, Rhee K, Mišković-Stanković V, Hui D (2018) Reinforcements in multi-scale polymer composites: processing, properties, and applications. Compos B Eng 138:122–139

    Article  CAS  Google Scholar 

  68. Mukrimin SG (2013) Utilization of hazelnut husk as biomass. Sustain Energy Technol Assess 4:72–77

    Google Scholar 

  69. Okamoto M (2004) Biodegradable polymer/layered silicate nanocomposites: a review. J Ind Eng Chem 10(7):1156–1181

    CAS  Google Scholar 

  70. Peng XW, Ren JL, Zhong LX (2011) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromol 12:3321–3329

    Article  CAS  Google Scholar 

  71. Peroval C, Debeaufort F, Despre D et al (2002) Edible arabinoxylan-based films. 1. Effects of lipid type on water vapor permeability, film structure, and other physical characteristics. J Agric Food Chem 50(14):3977–3983

    Google Scholar 

  72. Phan TD, Debeaufort F, Peroval C et al (2002) Arabinoxylan–lipid-based edible films and coatings. 3. Influence of drying temperature on film structure and functional properties. J Agric Food Chem 50(8):2423–2428

    Google Scholar 

  73. Sahin B, Aygün A, Gündüz H et al (2018) Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf B 163:119–124

    Article  CAS  Google Scholar 

  74. Sahin B, Demir E, Aygün A et al (2017) Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line. J Biotechnol 260C:79–83

    Article  CAS  Google Scholar 

  75. Salam A, Pawlak JJ, Venditti RA et al (2011) Incorporation of carboxyl groups into xylan for improved absorbency. Cellulose 18:1033–1041

    Article  CAS  Google Scholar 

  76. Samanta AK, Jayapal N, Jayaram C et al (2015) Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioact Carbohydr Dietary Fibre 5(1):62–71

    Article  CAS  Google Scholar 

  77. Schroeter J, Felix F (2005) Melting cellulose. Cellulose 12:159–165

    Article  CAS  Google Scholar 

  78. Sen B, Akdere EH, Savk A et al (2018) A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile. Appl Catal B 225(5):148–153

    Article  CAS  Google Scholar 

  79. Sen B, Kuzu S, Demir E et al (2017) Highly efficient catalytic dehydrogenation of dimethly ammonia borane via monodisperse palladium-nickel alloy nanoparticles assembled on PEDOT. Int J Hydrogen Energy 42(36):23307–23314

    Article  CAS  Google Scholar 

  80. Sen B, Kuzu S, Demir E et al (2017) Highly monodisperse RuCo nanoparticles decorated on functionalized multiwalled carbon nanotube with the highest observed catalytic activity in the dehydrogenation of dimethylamine borane. Int J Hydrogen Energy 42(36):23292–23298

    Article  CAS  Google Scholar 

  81. Sen B, Kuzu S, Demir E et al (2017) Hydrogen liberation from the dehydrocoupling of dimethylamine-borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide. Int J Hydrogen Energy 42(36):23299–23306

    Article  CAS  Google Scholar 

  82. Sen B, Kuzu S, Demir E et al (2017) Monodisperse palladium-nickel alloy nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane. Int J Hydrogen Energy 42(36):23276–23283

    Article  CAS  Google Scholar 

  83. Sen B, Kuzu S, Demir E et al (2017) Polymer-Graphene hybride decorated Pt nanoparticles as highly efficient and reusable catalyst for the dehydrogenation of dimethylamine-borane at room temperature. Int J Hydrogen Energy 42(36):23284–23291

    Article  CAS  Google Scholar 

  84. Sen B, Lolak N, Paralı Ö et al (2017) Bimetallic PdRu/graphene oxide-based catalysts for one-pot three-component synthesis of 2-amino-4H-chromene derivatives. Nano-Struct Nano-Objects 12:33–40

    Article  CAS  Google Scholar 

  85. Sen F, Boghossian AA, Sen S et al (2013) Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv Energy Mater 3(7):881–893

    Article  CAS  Google Scholar 

  86. Sen F, Ertan S, Sen S et al (2012) Platinum nanocatalysts prepared with different surfactants for C1 to C3 alcohol oxidations and their surface morphologies by AFM. J Nanopart Res 14:922–926

    Article  CAS  Google Scholar 

  87. Sen F, Gokagac G (2007) Different sized platinum nanoparticles supported on carbon: an XPS study on these methanol oxidation catalysts. J Phys Chem C 111:5715–5720

    Article  CAS  Google Scholar 

  88. Sen F, Gokagac G (2007) The activity of carbon supported platinum nanoparticles towards methanol oxidation reaction—role of metal precursor and a new surfactant, tert-octanethiol. J Phys Chem C 111:1467–1473

    Article  CAS  Google Scholar 

  89. Sen F, Gokagac G (2014) Pt nanoparticles synthesized with new surfactans: improvement in C1–C3 alcohol oxidation catalytic activity. J Appl Electrochem 44(1):199–207

    Article  CAS  Google Scholar 

  90. Sen F, Karataş Y, Gülcan M et al (2014) Amylamine stabilized platinum (0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane. RSC Adv 4(4):1526–1531

    Article  CAS  Google Scholar 

  91. Sen F, Ozturk Z, Sen S et al (2012) The preparation and characterization of nano-sized Pt–Pd alloy catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation. J Mater Sci 47:8134–8144

    Article  CAS  Google Scholar 

  92. Sen F, Sen S, Gokagac G (2011) Efficiency enhancement in the methanol/ethanol oxidation reactions on Pt nanoparticles prepared by a new surfactant, 1,1-dimethyl heptanethiol, and surface morphology by AFM. Phys Chem Chem Phys 13:1676–1684

    Article  CAS  Google Scholar 

  93. Sen F, Sen S, Gokagac G (2013) High performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions. J Nanopart Res 15:1979

    Article  CAS  Google Scholar 

  94. Sen F, Ulissi ZW, Gong X et al (2014) Spatiotemporal intracellular nitric oxide signaling captured using internalized, near-infrared fluorescent carbon nanotube nanosensors. Nano Lett 14(8):4887–4894

    Article  CAS  Google Scholar 

  95. Sen S, Sen F, Boghossian AA et al (2013) The effect of reductive dithiothreitol and trolox on nitric oxide quenching of single walled carbon nanotubes. J Phys Chem C 117(1):593–602

    Article  CAS  Google Scholar 

  96. Sen S, Sen F, Gokagac G (2011) Preparation and characterization of nano-sized Pt–Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation. Phys Chem Chem Phys 13:6784–6792

    Article  CAS  Google Scholar 

  97. Senthil Muthu Kumar T, Rajini N, Obi Reddy K et al (2018) All-cellulose composite films with cellulose matrix and Napier grass cellulose fibril fillers. Int J Biol Macromol 112:1310–1315

    Article  CAS  Google Scholar 

  98. Shah N, Ul-Islam M, Khattak WA, Park WJ (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohyd Polym 98(2):1585–1598

    Article  CAS  Google Scholar 

  99. Sinha Ray S (2013) Environmentally friendly polymer nanocomposites. Woodhead Publishing Limited, p 2856

    Google Scholar 

  100. Sjöström E (1993) Wood chemistry fundamentals and applications. Academic Press Inc., San Diego, p 293

    Google Scholar 

  101. Söderqvist Lindblad M, Ranucci E, Albertsson AC (2001) Biodegradable polymers from renewable sources. New hemicellulose-based hydrogels. Macromol Rapid Commun 22:962–967

    Article  Google Scholar 

  102. Sternemalm E, Höije A, Gatenholm P (2008) Effect of arabinose substitution on the material properties of arabinoxylan films. Carbohydr Res 343:753–757

    Article  CAS  Google Scholar 

  103. Sun RC, Sun XF, Tomkinson J (2004) Hemicelluloses and their derivatives. In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: science and technology. ACS symposium series, vol 864. American Chemical Society, Washington, pp 2–22

    Google Scholar 

  104. Tang XZ, Kumar P, Alavi S (2012) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52:426–442

    Article  CAS  Google Scholar 

  105. Tenkanen M (2004) Enzymatic tailoring of hemicelluloses. In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: science and technology. ACS symposium series, vol 864. American Chemical Society, Washington, pp 292–311

    Google Scholar 

  106. Tersur Orasugh J, Ranjan Saha N, Rana D et al (2018) Jute cellulose nano-fibrils/hydroxypropylmethylcellulose nanocomposite: a novel material with potential for application in packaging and transdermal drug delivery system. Ind Crops Prod 112:633–643

    Article  CAS  Google Scholar 

  107. Thakur VK, Thakur MK (2015) Eco-friendly polymer nanocomposites. Process Prop 75:579

    Google Scholar 

  108. Thomas S, Visakh Aji PM, Mathew P (ed) (2012) Advances in natural polymers: composites and nanocomposites, vol 18. Springer Science & Business Media, p 426

    Google Scholar 

  109. Won JP, Kang HB, Lee SJ et al (2012) Eco-friendly fireproof high-strength polymer cementitious composites. Constr Build Mater 30:406–412

    Article  Google Scholar 

  110. Yildiz Y, Erken E, Pamuk H et al (2016) Monodisperse Pt nanoparticles assembled on reduced graphene oxide: highly efficient and reusable catalyst for methanol oxidation and dehydrocoupling of dimethylamine-borane (DMAB). J Nanosci Nanotechnol 16:5951–5958

    Article  CAS  Google Scholar 

  111. Yıldız Y, Esirden İ, Erken E et al (2016) Microwave (Mw)-assisted synthesis of 5-substituted 1H-tetrazoles via [3 + 2] cycloaddition catalyzed by Mw–Pd/Co nanoparticles decorated on multi-walled carbon nanotubes. Chem Select 1(8):1695–1701

    Google Scholar 

  112. Yıldız Y, Kuzu S, Sen B et al (2017) Different ligand based monodispersed metal nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation. Int J Hydrogen Energy 42(18):13061–13069

    Article  CAS  Google Scholar 

  113. Yıldız Y, Onal Okyay T, Gezer B et al (2016) Monodisperse Mw-Pt NPs@VC as highly efficient and reusable adsorbents for methylene blue removal. J Cluster Sci 27:1953–1962

    Article  CAS  Google Scholar 

  114. Yildiz Y, Onal Okyay T, Sen B et al (2017) Highly monodisperse Pt/Rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions. Chem Select 2(2):697–701

    CAS  Google Scholar 

  115. Yıldız Y, Pamuk H, Karatepe O et al (2016) Carbon black hybride material furnished monodisperse platinum nanoparticles as highly efficient and reusable electrocatalysts for formic acid electro-oxidation. RSC Adv 6:32858–32862

    Article  CAS  Google Scholar 

  116. Yıldız Y, Ulus R, Eris S et al (2016) Functionalized multi-walled carbon nanotubes (f-MWCNT) as highly efficient and reusable heterogeneous catalysts for the synthesis of acridinedione derivatives. Chem Select 1(13):3861–3865

    Google Scholar 

  117. Zhang D, He M, Qin S, Yu J (2017) Effect of fiber length and dispersion on properties of long glass fiber reinforced thermoplastic composites based on poly(butylene terephthalate). RSC Adv 7:15439–15454

    Google Scholar 

  118. Zhang Y, Pitkänen L, Douglade J et al (2011) Wheat bran arabinoxylans: chemical structure and film properties of three isolated fractions. Carbohydr Polym 86:852–859

    Article  CAS  Google Scholar 

  119. Zhong LX, Peng XW, Yang D et al (2013) Longchain anhydride modification: a new strategy for preparing xylan films. J Agric Food Chem 61:655–661

    Article  CAS  Google Scholar 

  120. Zhu Ryberg Y, Edlund U, Albertsson AC (2011) Conceptual approach to renewable barrier film design based on wood hydrolysate. Biomacromol 12:1355–1362

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balli, B., Calimli, M.H., Kuyuldar, E., Sen, F. (2019). Synthesis, Characterization, and Applications of Hemicellulose Based Eco-friendly Polymer Composites. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_10

Download citation

Publish with us

Policies and ethics