Skip to main content

PELDOR in Peptide Research

  • Chapter
  • First Online:
Pulsed Electron–Electron Double Resonance

Abstract

The measurement of distances within and between peptides is an important application of PELDOR or DEER spectroscopy in biology. Individual measurements have been made on many proteins and provide distance information that have been vital for understanding the properties of those proteins. However, the most thoroughly studied peptides belong to the class of peptaibols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toniolo C, Crisma M, Formaggio F, Peggion C, Epand RF, Epand RM (2001) Lipopeptaibols, a novel family of membrane active, antimicrobial peptides. Cell Mol Life Sci 58(9):1179–1188. https://doi.org/10.1007/Pl00000932

    Article  CAS  PubMed  Google Scholar 

  2. Peggion C, Formaggio F, Crisma M, Epand RF, Epand RM, Toniolo C (2003) Trichogin: a paradigm for lipopeptaibols. J Pept Sci 9(11–12):679–689. https://doi.org/10.1002/psc.500

    Article  CAS  PubMed  Google Scholar 

  3. Toniolo C, Crisma M, Formaggio F, Peggion C, Monaco V, Goulard C, Rebuffat S, Bodo B (1996) Effect of N-alpha-acyl chain length on the membrane-modifying properties of synthetic analogs of the lipopeptaibol trichogin GA IV. J Am Chem Soc 118(21):4952–4958. https://doi.org/10.1021/ja954081o

    Article  CAS  Google Scholar 

  4. Rebuffat S, Goulard C, Bodo B, Roquebert MF (1999) The peptaibol antibiotics from Trichoderma soil fungi; structural diversity and membrane properties. In: Pandalai SG (ed) Recent research developments in organic & bioorganic chemistry, vol 3. Transworld Research Network, Trivandrum, pp 65–91

    Google Scholar 

  5. Fox RO, Richards FM (1982) A voltage-gated ion channel model inferred from the crystal-structure of alamethicin at 1.5 Å resolution. Nature 300(5890):325–330. https://doi.org/10.1038/300325a0

    Article  CAS  Google Scholar 

  6. Karle IL, Flippenanderson J, Sukumar M, Balaram P (1987) Conformation of a 16-residue zervamicin-iia analog peptide containing 3 different structural features—3(10)-helix, alpha-helix, and beta-bend ribbon. Proc Natl Acad Sci USA 84(15):5087–5091. https://doi.org/10.1073/pnas.84.15.5087

    Article  CAS  PubMed  Google Scholar 

  7. Toniolo C, Peggion C, Crisma M, Formaggio F, Shui XQ, Eggleston DS (1994) Structure determination of racemic trichogin-a-IV using centrosymmetric crystals. Nat Struct Biol 1(12):908–914. https://doi.org/10.1038/nsb1294-908

    Article  CAS  PubMed  Google Scholar 

  8. Crisma M, Monaco V, Formaggio F, Toniolo C, George C, Flippen-Anderson JL (1997) Crystallographic structure of a helical lipopeptaibol antibiotic analogue. Lett Pept Sci 4(4–6):213–218. https://doi.org/10.1023/A:1008874816982

    Article  CAS  Google Scholar 

  9. Toniolo C, Brückner H (2007) Topical issue: peptaibiotics. Chem Biodivers 4(6):1021–1412. https://doi.org/10.1002/cbdv.200790093

    Article  CAS  Google Scholar 

  10. Brückner H, Toniolo C (2013) Special issue: peptaibiotics II. Chem Biodivers 10(5):731–961. https://doi.org/10.1002/cbdv.201300139

    Article  Google Scholar 

  11. Toniolo C, Brückner H (eds) (2009) Peptaibiotics fungal peptides containing α-dialkyl α-amino acids. Wiley-VCH, Weinheim

    Google Scholar 

  12. Toniolo C, Crisma M, Formaggio F, Peggion C (2001) Control of peptide conformation by the thorpe-ingold effect (C(alpha)-tetrasubstitution). Biopolymers 60(6):396–419. https://doi.org/10.1002/bip.10184

    Article  CAS  PubMed  Google Scholar 

  13. Karle IL, Balaram P (1990) Structural characteristics of alpha-helical peptide molecules containing aib residues. Biochem US 29(29):6747–6756. https://doi.org/10.1021/bi00481a001

    Article  CAS  Google Scholar 

  14. Toniolo C, Crisma M, Formaggio F (1998) TOAC, a nitroxide spin-labeled, achiral C(alpha)-tetrasubstituted alpha-amino acid, is an excellent tool in material science and biochemistry. Biopolymers 47(2):153–158

    Article  CAS  Google Scholar 

  15. Hanson P, Millhauser G, Formaggio F, Crisma M, Toniolo C (1996) ESR characterization of hexameric, helical peptides using double TOAC spin labeling. J Am Chem Soc 118(32):7618–7625. https://doi.org/10.1021/ja961025u

    Article  CAS  Google Scholar 

  16. Hanson P, Anderson DJ, Martinez G, Millhauser G, Formaggio F, Crisma M, Toniolo C, Vita C (1998) Electron spin resonance and structural analysis of water soluble, alanine-rich peptides incorporating TOAC. Mol Phys 95(5):957–966. https://doi.org/10.1080/002689798166576

    Article  CAS  Google Scholar 

  17. Anderson DJ, Hanson P, McNulty J, Millhauser G, Monaco V, Formaggio F, Crisma M, Toniolo C (1999) Solution structures of TOAC-labeled trichogin GA IV peptides from allowed (g ≈ 2) and half-field electron spin resonance. J Am Chem Soc 121(29):6919–6927. https://doi.org/10.1021/ja984255c

    Article  CAS  Google Scholar 

  18. Bobone S, Roversi D, Giordano L, De Zotti M, Formaggio F, Toniolo C, Park Y, Stella L (2012) The lipid dependence of antimicrobial peptide activity is an unreliable experimental test for different pore models. Biochem US 51(51):10124–10126. https://doi.org/10.1021/bi3015086

    Article  CAS  Google Scholar 

  19. Bobone S, Gerelli Y, De Zotti M, Bocchinfuso G, Farrotti A, Orioni B, Sebastiani F, Latter E, Penfold J, Senesi R, Formaggio F, Palleschi A, Toniolo C, Fragneto G, Stella L (2013) Membrane thickness and the mechanism of action of the short peptaibol trichogin GA IV. BBA-Biomem 1828(3):1013–1024. https://doi.org/10.1016/j.bbamem.2012.11.033

    Article  CAS  Google Scholar 

  20. Tsvetkov YD, Milov AD, Maryasov AG (2008) Pulsed electron–electron double resonance (PELDOR) as EPR spectroscopy in nanometre range. Russ Chem Rev 77(6):487–520

    Article  CAS  Google Scholar 

  21. Milov AD, Tsvetkov YD, Gorbunova EY, Mustaeva LG, Ovchinnikova TV, Raap J (2002) Self-aggregation properties of spin-labeled zervamicin IIA as studied by PELDOR spectroscopy. Biopolymers 64(6):328–336. https://doi.org/10.1002/bip.10208

    Article  CAS  PubMed  Google Scholar 

  22. Milov AD, Tsvetkov YD, Gorbunova EY, Mustaeva LG, Ovchinnikova TV, Handgraaf JW, Raap J (2007) Solvent effects on the secondary structure of the membrane-active zervamicin determined by PELDOR spectroscopy. Chem Biodivers 4(6):1243–1255. https://doi.org/10.1002/cbdv.200790107

    Article  CAS  PubMed  Google Scholar 

  23. Toniolo C, Benedetti E (1991) The polypeptide-310-helix. Trends Biochem Sci 16(9):350–353

    Article  CAS  Google Scholar 

  24. Yasui SC, Keiderling TA, Bonora GM, Toniolo C (1986) Vibrational circular-dichroism of polypeptides. 5. A study of 310-helical-octapeptides. Biopolymers 25(1):79–89. https://doi.org/10.1002/bip.360250107

    Article  CAS  Google Scholar 

  25. Crisma M, Formaggio F, Moretto A, Toniolo C (2006) Peptide helices based on alpha-amino acids. Biopolymers 84(1):3–12. https://doi.org/10.1002/bip.20357

    Article  CAS  PubMed  Google Scholar 

  26. Toniolo C (1980) Intramolecularly hydrogen-bonded peptide conformations. CRC Cr Rev Bioch Mol 9(1):1–44. https://doi.org/10.3109/10409238009105471

    Article  CAS  Google Scholar 

  27. Crisma M, De Zotti M, Moretto A, Peggion C, Drouillat B, Wright K, Couty F, Toniolo C, Formaggio F (2015) Single and multiple peptide gamma-turns: literature survey and recent progress. New J Chem 39(5):3208–3216. https://doi.org/10.1039/c4nj01564a

    Article  CAS  Google Scholar 

  28. Armen R, Alonso DOV, Daggett V (2003) The role of α-, 310-, and π-helix in helix → coil transitions. Protein Sci 12(6):1145–1157. https://doi.org/10.1110/ps02040103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Millhauser GL (1995) Views of helical peptides—a proposal for the position of 310-helix along the thermodynamic folding pathway. Biochem US 34(12):3873–3877. https://doi.org/10.1021/bi00012a001

    Article  CAS  Google Scholar 

  30. Milov AD, Maryasov AG, Tsvetkov YD, Raap J (1999) Pulsed ELDOR in spin-labeled polypeptides. Chem Phys Lett 303(1–2):135–143. https://doi.org/10.1016/S0009-2614(99)00220-1

    Article  CAS  Google Scholar 

  31. Milov AD, Maryasov AG, Samoilova RI, Tsvetkov YD, Raap J, Monaco V, Formaggio F, Crisma M, Toniolo C (2000) Pulsed double electron–electron resonance in spin-labeled polypeptides data on the secondary structure. Dokl Akad Nauk 370(2):265–268

    CAS  Google Scholar 

  32. Milov AD, Tsvetkov YD, Formaggio F, Crisma M, Toniolo C, Raap J (2001) The secondary structure of a membrane-modifying peptide in a supramolecular assembly studied by PELDOR and CW-ESR spectroscopies. J Am Chem Soc 123(16):3784–3789. https://doi.org/10.1021/ja0033990

    Article  CAS  PubMed  Google Scholar 

  33. Milov AD, Tsvetkov YD, Raap J, De Zotti M, Formaggio F, Toniolo C (2016) Conformation, self-aggregation, and membrane interaction of peptaibols as studied by pulsed electron double resonance spectroscopy. Biopolymers 106(1):6–24. https://doi.org/10.1002/bip.22713

    Article  CAS  PubMed  Google Scholar 

  34. Milov AD, Tsvetkov YD, Maryasov AG, Gobbo M, Prinzivalli C, De Zotti M, Formaggio F, Toniolo C (2012) Conformational properties of the spin-labeled tylopeptin B and heptaibin peptaibiotics based on PELDOR spectroscopy data. Appl Magn Reson 44(4):495–508. https://doi.org/10.1007/s00723-012-0402-1

    Article  CAS  Google Scholar 

  35. Milov AD, Tsvetkov YD, De Zotti M, Prinzivalli C, Biondi B, Formaggio F, Toniolo C, Gobbo M (2013) Aggregation modes of the spin mono-labeled tylopeptin B and heptaibin peptaibiotics in frozen solutions of weak polarity as studied by PELDOR spectroscopy. J Struct Chem 54:S73–S85. https://doi.org/10.1134/S0022476613070056

    Article  CAS  Google Scholar 

  36. Milov AD, Samoilova RI, Tsvetkov YD, De Zotti M, Toniolo C, Raap J (2008) PELDOR conformational analysis of bis-labeled alamethicin aggregated in phospholipid vesicles. J Phys Chem B 112(43):13469–13472. https://doi.org/10.1021/Jp8046714

    Article  CAS  PubMed  Google Scholar 

  37. Milov AD, Tsvetkov YD, Formaggio F, Oancea S, Toniolo C, Raap J (2003) Aggregation of spin labeled trichogin GA IV dimers: distance distribution between spin labels in frozen solutions by PELDOR data. J Phys Chem B 107(49):13719–13727. https://doi.org/10.1021/jp035057x

    Article  CAS  Google Scholar 

  38. Milov AD, Tsvetkov YD, Formaggio F, Oancea S, Toniolo C, Raap J (2004) Solvent effect on the distance distribution between spin labels in aggregated spin labeled trichogin GA IV dimer peptides as studied by pulsed electron–electron double resonance. Phys Chem Chem Phys 6(13):3596–3603. https://doi.org/10.1039/b313701e

    Article  CAS  Google Scholar 

  39. Milov AD, Tsvetkov YD, Maryasov AG, Gobbo M, Prinzivalli C, De Zotti M, Formaggio F, Toniolo C (2013) Conformational properties of the spin-labeled tylopeptin B and heptaibin peptaibiotics based on PELDOR spectroscopy data. Appl Magn Reson 44(4):495–508. https://doi.org/10.1007/s00723-012-0402-1

    Article  CAS  Google Scholar 

  40. Milov AD, Tsvetkov YD, Bortolus M, Maniero AL, Gobbo M, Toniolo C, Formaggio F (2014) Synthesis and conformational properties of a TOAC doubly spin-labeled analog of the medium-length, membrane active peptaibiotic ampullosporin A as revealed by CD, fluorescence, and EPR spectroscopies. Biopolymers 102(1):40–48. https://doi.org/10.1002/bip.22362

    Article  CAS  PubMed  Google Scholar 

  41. Rabenstein MD, Shin YK (1995) Determination of the distance between 2 spin labels attached to a macromolecule. Proc Natl Acad Sci USA 92(18):8239–8243. https://doi.org/10.1073/pnas.92.18.8239

    Article  CAS  PubMed  Google Scholar 

  42. Bortolus M, Tombolato F, Tessari I, Bisaglia M, Mammi S, Bubacco L, Ferrarini A, Maniero AL (2008) Broken helix in vesicle and micelle-bound alpha-synuclein: insights from site-directed spin labeling-EPR experiments and MD simulations. J Am Chem Soc 130(21):6690–6691. https://doi.org/10.1021/jaB010429

    Article  CAS  PubMed  Google Scholar 

  43. Karle IL (1994) Diffraction studies of model and natural helical peptides. In: White SH (ed) Membrane protein structure: experimental approaches. Springer, New York, pp 355–380. https://doi.org/10.1007/978-1-4614-7515-6

    Google Scholar 

  44. Balashova TA, Shenkarev ZO, Tagaev AA, Ovchinnikova TV, Raap J, Arseniev AS (2000) NMR structure of the channel-former zervamicin IIB in isotropic solvents. FEBS Lett 466(2–3):333–336. https://doi.org/10.1016/S0014-5793(99)01707-X

    Article  CAS  PubMed  Google Scholar 

  45. Peggion C, Coin I, Toniolo C (2004) Total synthesis in solution of alamethicin F50/5 by an easily tunable segment condensation approach. Biopolymers 76(6):485–493. https://doi.org/10.1002/bip.20161

    Article  CAS  PubMed  Google Scholar 

  46. Crisma M, Peggion C, Baldini C, MacLean EJ, Vedovato N, Rispoli G, Toniolo C (2007) Crystal structure of a spin-labeled, channel-forming alamethicin analogue. Angew Chem Int Edit 46(12):2047–2050. https://doi.org/10.1002/anie.200604417

    Article  CAS  Google Scholar 

  47. Milov AD, Tsvetkov YD, Formaggio F, Crisma M, Toniolo C, Raap J (2000) Self-assembling properties of membrane-modifying peptides studied by PELDOR and CW-ESR spectroscopies. J Am Chem Soc 122(16):3843–3848. https://doi.org/10.1021/ja993870t

    Article  CAS  Google Scholar 

  48. Milov AD, Tsvetkov YD, Raap J (2000) Aggregation of trichogin analogs in weakly polar solvents: PELDOR and ESR studies. Appl Magn Reson 19(2):215–226. https://doi.org/10.1007/Bf03162276

    Article  CAS  Google Scholar 

  49. Milov AD, Tsvetkov YD, Formaggio F, Crisma M, Toniolo C, Raap J (2003) Self-assembling and membrane modifying properties of a lipopeptaibol studied by CW-ESR and PELDOR spectroscopies. J Pept Sci 9(11–12):690–700. https://doi.org/10.1002/psc.513

    Article  CAS  PubMed  Google Scholar 

  50. Milov AD, Tsvetkov YD, Formaggio F, Crisma M, Toniolo C, Millhauser GL, Raap J (2001) Self-assembling properties of a membrane-modifying lipopeptaibol in weakly polar solvents, studied by CW ESR. J Phys Chem B 105(45):11206–11213. https://doi.org/10.1021/Jp011948y

    Article  CAS  Google Scholar 

  51. Milov AD, Samoilova MI, Tsvetkov YD, Jost M, Peggion C, Formaggio F, Crisma M, Toniolo C, Handgraaf JW, Raap J (2007) Supramolecular structure of self-assembling alamethicin analog studied by ESR and PELDOR. Chem Biodivers 4(6):1275–1298. https://doi.org/10.1002/cbdv.200790110

    Article  CAS  PubMed  Google Scholar 

  52. Milov AD, Samoilova RI, Tsvetkov YD, Peggion C, Formaggio F, Toniolo C, Raap J (2006) Aggregation of spin-labeled alamethicin in low-polarity solutions as studied by PELDOR spectroscopy. Dokl Phys Chem 406:21–25. https://doi.org/10.1134/S0012501606010064

    Article  CAS  Google Scholar 

  53. Marsh D (1989) Experimental methods in spin-label spectral analysis. In: Berliner LJ, Reuben J (eds) Spin labeling, theory and applications. Biological magnetic resonance, vol 8. Plenum Press, New York, pp 255–303. https://doi.org/10.1007/978-1-4613-0743-3

    Google Scholar 

  54. Stella L, Mazzuca C, Venanzi M, Palleschi A, Didone M, Formaggio F, Toniolo C, Pispisa B (2004) Aggregation and water-membrane partition as major determinants of the activity of the antibiotic peptide trichogin GA IV. Biophys J 86(2):936–945

    Article  Google Scholar 

  55. Kropacheva TN, Raap J (2002) Ion transport across a phospholipid membrane mediated by the peptide trichogin GA IV. Biochim Biophys Acta (BBA)—Biomemb 1567:193–203. https://doi.org/10.1016/s0005-2736(02)00616-8

    Article  CAS  Google Scholar 

  56. Milov AD, Samoilova RI, Tsvetkov YD, Formaggio F, Toniolo C, Raap J (2005) Membrane-peptide interaction studied by PELDOR and CW ESR: peptide conformations and cholesterol effect on the spatial peptide distribution in the membrane. Appl Magn Reson 29(4):703–716. https://doi.org/10.1007/Bf03166345

    Article  CAS  Google Scholar 

  57. Salnikov ES, Erilov DA, Milov AD, Tsvetkov YD, Peggion C, Formaggio F, Toniolo C, Raap J, Dzuba SA (2006) Location and aggregation of the spin-labeled peptide trichogin GA IV in a phospholipid membrane as revealed by pulsed EPR. Biophys J 91(4):1532–1540. https://doi.org/10.1529/biophysj.105.075887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Milov AD, Erilov DA, Salnikov ES, Tsvetkov YD, Formaggio F, Toniolo C, Raap J (2005) Structure and spatial distribution of the spin-labelled lipopeptide trichogin GA IV in a phospholipid membrane studied by pulsed electron–electron double resonance (PELDOR). Phys Chem Chem Phys 7(8):1794–1799. https://doi.org/10.1039/b418414a

    Article  CAS  PubMed  Google Scholar 

  59. Milov AD, Samoilova RI, Tsvetkov YD, Formaggio F, Toniolo C, Raap J (2007) Self-aggregation of spin-labeled alamethicin in ePC vesicles studied by pulsed electron–electron double resonance. J Am Chem Soc 129(30):9260–9261. https://doi.org/10.1021/ja072851d

    Article  CAS  PubMed  Google Scholar 

  60. Bartucci R, Guzzi R, De Zotti M, Toniolo C, Sportelli L, Marsh D (2008) Backbone dynamics of alamethicin bound to lipid membranes: spin-echo electron paramagnetic resonance of TOAC-spin labels. Biophys J 94(7):2698–2705. https://doi.org/10.1529/biophysj.107.115287

    Article  CAS  PubMed  Google Scholar 

  61. Salnikov ES, De Zotti M, Formaggio F, Li X, Toniolo C, O’Neil JDJ, Raap J, Dzuba SA, Bechinger B (2009) Alamethicin topology in phospholipid membranes by oriented solid-state NMR and EPR spectroscopies: a comparison. J Phys Chem B 113(10):3034–3042. https://doi.org/10.1021/jp8101805

    Article  CAS  PubMed  Google Scholar 

  62. Milov AD, Samoilova RI, Tsvetkov YD, De Zotti M, Formaggio F, Toniolo C, Handgraaf JW, Raap J (2009) Structure of self-aggregated alamethicin in ePC membranes detected by pulsed electron–electron double resonance and electron spin echo envelope modulation spectroscopies. Biophys J 96(8):3197–3209. https://doi.org/10.1016/j.bpj.2009.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. North CL, BarrangerMathys M, Cafiso DS (1995) Membrane orientation of the N-terminal segment of alamethicin determined by solid-state N-15 NMR. Biophys J 69(6):2392–2397

    Article  CAS  Google Scholar 

  64. Salnikov ES, Friedrich H, Li X, Bertani P, Reissmann S, Hertweck C, O’Neil JDJ, Raap J, Bechinger B (2009) Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethicin by oriented N-15 and P-31 solid-state NMR spectroscopy. Biophys J 96(1):86–100. https://doi.org/10.1529/biophysj.108.136242

    Article  CAS  PubMed  Google Scholar 

  65. Marsh D, Jost M, Peggion C, Toniolo C (2007) Lipid chain-length dependence for incorporation of alamethicin in membranes: electron paramagnetic resonance studies on TOAC-spin labeled analogs. Biophys J 92(11):4002–4011. https://doi.org/10.1529/biophysj.107.104026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Parsegian VA, Fuller N, Rand RP (1979) Measured work of deformation and repulsion of lecithin bilayers. Proc Natl Acad Sci USA 76(6):2750–2754. https://doi.org/10.1073/pnas.76.6.2750

    Article  CAS  PubMed  Google Scholar 

  67. Murzyn K, Rog T, Blicharski W, Dutka M, Pyka J, Szytula S, Froncisz W (2006) Influence of the disulfide bond configuration on the dynamics of the spin label attached to cytochrome c. Proteins-Struct Funct Bioinform 62(4):1088–1100. https://doi.org/10.1002/prot.20838

    Article  CAS  Google Scholar 

  68. Spaar A, Munster C, Salditt T (2004) Conformation of peptides in lipid membranes studied by X-ray grazing incidence scattering. Biophys J 87(1):396–407. https://doi.org/10.1529/biophysj.104.040667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Reginsson GW, Schiemann O (2011) Studying bimolecular complexes with pulsed electron–electron double resonance spectroscopy. Biochem Soc T 39:128–139. https://doi.org/10.1042/Bst0390128

    Article  CAS  Google Scholar 

  70. Goobes G, Stayton PS, Drobny GP (2007) Solid-state NMR studies of molecular recognition at protein-mineral interfaces. Prog Nucl Mag Res Sp 50(2–3):71–85. https://doi.org/10.1016/j.pnmrs.2006.11.002

    Article  CAS  Google Scholar 

  71. Mirau PA, Naik RR, Gehring P (2011) Structure of peptides on metal oxide surfaces probed by NMR. J Am Chem Soc 133(45):18243–18248. https://doi.org/10.1021/ja205454t

    Article  CAS  PubMed  Google Scholar 

  72. Milov AD, Samoilova RI, Tsvetkov YD, Peggion C, Formaggio F, Toniolo C (2014) Peptides on the surface. PELDOR data for spin-labeled alamethicin F50/5 analogues on organic sorbent. J Phys Chem B 118(25):7085–7090. https://doi.org/10.1021/jp503691n

    Article  CAS  Google Scholar 

  73. Syryamina VN, Samoilova RI, Tsvetkov YD, Ischenko AV, De Zotti M, Gobbo M, Toniolo C, Formaggio F, Dzuba SA (2016) Peptides on the surface: spin-label EPR and PELDOR study of adsorption of the antimicrobial peptides trichogin GA IV and ampullosporin A on the silica nanoparticles. Appl Magn Reson 47(3):309–320. https://doi.org/10.1007/s00723-015-0745-5

    Article  CAS  Google Scholar 

  74. Banham JE, Baker CM, Ceola S, Day IJ, Grant GH, Groenen EJJ, Rodgers CT, Jeschke G, Timmel CR (2008) Distance measurements in the borderline region of applicability of CW EPR and DEER: a model study on a homologous series of spin-labelled peptides. J Magn Reson 191(2):202–218. https://doi.org/10.1016/j.jmr.2007.11.023

    Article  CAS  PubMed  Google Scholar 

  75. Stoller S, Sicoli G, Baranova TY, Bennati M, Diederichsen U (2011) TOPP: a novel nitroxide-labeled amino acid for EPR distance measurements. Angew Chem Int Edit 50(41):9743–9746

    Article  CAS  Google Scholar 

  76. Yang ZY, Kise D, Saxena S (2010) An approach towards the measurement of nanometer range distances based on Cu2+ ions and ESR. J Phys Chem B 114(18):6165–6174. https://doi.org/10.1021/jp911637s

    Article  CAS  PubMed  Google Scholar 

  77. Yang ZY, Ji M, Saxena S (2010) Practical aspects of copper ion-based double electron electron resonance distance measurements. Appl Magn Reson 39(4):487–500. https://doi.org/10.1007/s00723-010-0181-5

    Article  CAS  Google Scholar 

  78. Maryasov AG, Tsvetkov YD, Raap J (1998) Weakly coupled radical pairs in solids: ELDOR in ESE structure studies. Appl Magn Reson 14(1):101–113. https://doi.org/10.1007/Bf03162010

    Article  CAS  Google Scholar 

  79. Jun S, Becker JS, Yonkunas M, Coalson R, Saxena S (2006) Unfolding of alanine-based peptides using electron spin resonance distance measurements. Biochem US 45(38):11666–11673. https://doi.org/10.1021/bi061195b

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri D. Tsvetkov .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsvetkov, Y.D., Bowman, M.K., Grishin, Y.A. (2019). PELDOR in Peptide Research. In: Pulsed Electron–Electron Double Resonance. Springer, Cham. https://doi.org/10.1007/978-3-030-05372-7_6

Download citation

Publish with us

Policies and ethics