Skip to main content

Spark Plasma Sintering of Titanium-Based Materials

  • Chapter
  • First Online:
Spark Plasma Sintering of Materials

Abstract

Titanium-based materials are highly sought after due to their exceptional thermomechanical properties such as excellent corrosion resistance, high strength to weight ratio, high melting point, and toughness at elevated temperatures which contribute to their demand in automobile, aerospace, chemical, and energy industries. With these unique properties, the method of fabricating these materials has played a role in improving its mechanical properties through reinforcement with other materials. Powder metallurgy has been utilized to fabricate engineering materials into near net shape owing to its low cost and increase in material yield. Among various powder metallurgy processes, spark plasma sintering is the most popular and efficient method of fabricating materials such as titanium alloys, nickel alloys, ceramics, etc. because of its rapid heating and shorter sintering cycle. Aside from its utilization of pulsed direct current and pressure, spark plasma sintering fabricates at lower temperature, and grain growths are minimized as compared to other conventional sintering techniques. Materials obtained through this technique are highly dense, and they tend to yield superior mechanical properties including the phases and microstructures. The goal of this work is to present the processes and applications of spark plasma sintering of titanium-based materials, evaluate the optimization process parameters and their effects on material properties, and study the phases and microstructural evolutions with the support of research from literature on titanium materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalund R (2008) Spark plasma sintering. Ceramic Industry Magazine, May

    Google Scholar 

  • Adegbenjo AO, Olubambi PA, Potgieter JH, Shongwe MB, Ramakokovhu M (2017) Spark plasma sintering of graphitized multi-walled carbon nanotube reinforced Ti6Al4V. Mater Des 128:119–129

    Article  CAS  Google Scholar 

  • Bayode BL, Lethabane ML, Olubambi PA, Sigalas I, Shongwe MB, Ramakokovhu MM (2017) Densification and micro-structural characteristics of spark plasma sintered Ti-Zr-Ta powders. Powder Technol 321:471–478

    Article  CAS  Google Scholar 

  • Bloxam AG (1906) Improved manufacture of electric incandescence lamp filaments from tungsten or molybdenum or an alloy thereof. British patent 27,002

    Google Scholar 

  • Boesel RW, Goetzel CG (1971) Powder Metallurgy 3:38

    Google Scholar 

  • Boyer RR, Briggs RD (2005) The use of β titanium alloys in the aerospace industry. J Mater Eng Perform 14(6):681–685

    Article  CAS  Google Scholar 

  • Chen W, Anselmi-Tamburini U, Garay JE, Groza JR, Munir ZA (2005) Fundamental investigations on the spark plasma sintering/synthesis process: I. Effect of dc pulsing on reactivity. Mater Sci Eng A 39:132–138

    Article  Google Scholar 

  • Chen YY, Yu HB, Zhang DL, Chai LH (2009) Effect of spark plasma sintering temperature on microstructure and mechanical properties of an ultrafine grained TiAl intermetallic alloy. Mater Sci Eng A 525:166–173

    Article  Google Scholar 

  • Dehghan-Manshadi A, Bermingham MJ, Dargusch MS, StJohn DH, Qianb M (2017) Metal injection moulding of titanium and titanium alloys: challenges and recent development. Powder Technol 319:289–301

    Article  CAS  Google Scholar 

  • Falodun OE, Obadele BA, Oke SR, Ige OO, Olubambi PA, Lethabane ML, Bhero SW (2018) Influence of spark plasma sintering on microstructure and wear behaviour of Ti-6Al-4V reinforced with nanosized TiN. Trans Nonferrous Metals Soc China 28(1):47–54

    Article  CAS  Google Scholar 

  • Feng P, He Y, Xiao Y, Xiong W (2008) Effect of VC addition on sinterability and microstructure of ultrafine Ti (C, N)-based cermets in spark plasma sintering. J Alloys Compd 460(1–2):453–459

    Article  CAS  Google Scholar 

  • Garbiec D, Siwak P, Mroz A (2016) Effect of compaction pressure and heating rate on microstructure and mechanical properties of spark plasma sintered Ti6Al4V alloy. Arch Civil Mech Eng 16(4):702–707

    Article  Google Scholar 

  • Grasso S, Sakk Y, Maizza G (2009) Electric current activated/assisted sintering (ECAS): a review of patents 1906-2008. Sci Technol Adv Mater 10:1–24

    Article  Google Scholar 

  • Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Räthel J, Herrmann M (2014) Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater 16:830–848

    Article  CAS  Google Scholar 

  • Henriques ARV, Campos P, Cairo AC, Bressiani CJ (2005) Production of titanium alloys for advanced aerospace systems by powder metallurgy. Mat Res 8(4). São Carlos. https://doi.org/10.1590/S1516-14392005000400015

  • http://www.dierk-raabe.com/titanium-alloys

  • Inoue K (1966) Electric discharge sintering. US patent 3,241,956

    Google Scholar 

  • Kessel HU, Hennicke J (2007) Aspects concerning the super-fast sintering of powder metallic and ceramic materials. High-Perform Ceram 56(3):164–166

    CAS  Google Scholar 

  • Kessel HU, Hennicke J, Kirchner R, Kessel T (2009) Rapid sintering of novel materials by FAST/SPS – further development to the point of an industrial production process with high cost efficiency. FCT Systeme GmbH, Rauenstein, Germany. http://fct-systeme.de/download/20100225123420/FCT-Sintered-Materials.pdf

  • Khalil KA (2012) Advanced sintering of Nano-ceramic materials. In: Ceramic materials – Progress in modern ceramics. InTech, Rijeka

    Google Scholar 

  • Lee YI, Lee JH, Hong SH, Kim DY (2003) Preparation of nanostructured TiO2 ceramics by spark plasma sintering. Mater Res Bull 38(6):925–930

    Article  CAS  Google Scholar 

  • Leyens C, Peters M (2003) Titanium and titanium alloys. Fundamentals and applications. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN: 3-527-30534-3

    Google Scholar 

  • Lui L, Hou Z, Zhang B, Ye F, Zhang Z, Zhou Y (2013) A new heating route of spark plasma sintering and its effect on alumina ceramic densification. Mater Sci Eng A 559:462–466

    Article  Google Scholar 

  • Lutjering G, Williams JC (2003) Titanium. Springer, Berlin

    Book  Google Scholar 

  • Lütjering G, Williams JC (2007) Titanium. Springer Science & Business Media, Berlin

    Google Scholar 

  • Malinov S, Zhecheva A, Sha W (2004) Relation between the microstructure and properties of commercial titanium alloys and the parameters of gas nitriding. Met Sci Heat Treat 46(7–8):286–229

    Article  CAS  Google Scholar 

  • Matizamhuka WR (2016) Spark plasma sintering (SPS)-an advanced sintering technique for structural nanocomposite materials. J South Afr Inst Min Metall 116(12):1171–1180

    Article  CAS  Google Scholar 

  • Moiseyev VN (2006) Titanium alloys: Russian aircraft and aerospace applications. CRC press, Boca Raton

    Google Scholar 

  • Moraes PEL, Contieri JR, Lopes SN, Robin A, Caram R (2014) Effects of Sn addition on the microstructure, mechanical properties and corrosion behavior of Ti–Nb–Sn alloys. Mater Charact 96:273–281

    Article  CAS  Google Scholar 

  • Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41(3):763–777

    Article  CAS  Google Scholar 

  • Munir KS, Kingshott P, Wen C (2015) Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy—a review. Solid State Mater Sci 40(1):38–55. https://doi.org/10.1080/10408436.2014.929521

    Article  CAS  Google Scholar 

  • Obadele BA, Ige OO, Olubambi PA (2017) Fabrication and characterization of titanium-nickel-zirconia matrix composites prepared by spark plasma sintering. J Alloys Compd 710:825–830

    Article  CAS  Google Scholar 

  • Panigrahi BB, Godkhindi MM, Das K, Mukunda PG, Ramakrishnan P (2005) Sintering kinetics of micrometric titanium powder, Mater Sci Eng A 396:255–262

    Google Scholar 

  • Peters M, Hemptenmacher J, Kumpfert J, Leyens C (2003) Titanium and titanium alloys. Leyens C, Peters M, ed. Weinheim, Wiley-VCH, p 1

    Google Scholar 

  • Qian M (2010) Cold compaction and sintering of titanium and its alloys for near-net-shape or preform fabrication. Int J Powder Metall 46(5):29–44

    Google Scholar 

  • Rajeswari K, Hareesh US, Sbairi R, Chakravarty D, Johnson R (2010) Comparative evaluation of spark plasma (SPS), microwave (MWS), two stage sintering (TSS) and conventional sintering (CRH) on the densification and micro structural evolution of fully stabilized zirconia ceramics. Sci Sinter 42:259–267

    Article  CAS  Google Scholar 

  • Reis de Vasconcellos LM, Carvalho YR et al (2012) Porous titanium by powder metallurgy for biomedical application: characterization, cell citotoxity and in vivo tests of osseointegration. InTech, Rijeka, pp 47–73

    Google Scholar 

  • Revankar DG, Shetty R, Shrikanth RS, Gaitonde NV (2017) Wear resistance enhancement of titanium alloy (Ti–6Al–4V) by ball burnishing process. J Mater Res Technol 6(1):13–32

    Article  CAS  Google Scholar 

  • Sergueeva AV, Hulbert DM, Mara NA, Mukharjee AK (2009) Mechanical properties of nanocomposite materials. In: Wilde G (ed) Nanostructured materials. Elsevier, New York. Ch. 3, pp 127–171

    Chapter  Google Scholar 

  • Shongwe MB, Ramakokovhu MM, Lethabane ML, Olubambi PA (2017) Comparison of spark plasma sintering and hybrid spark plasma sintering of Ni-Fe alloys. Proceedings of the World Congress on Engineering. Vol II WCE

    Google Scholar 

  • Shen Z, Johnsson M, Zhao Z, Nygren M (2002). Spark Plasma Sintering of Alumina. J Am Ceram Soc 85(8):1921–1927

    Google Scholar 

  • Sim KH, Wang G, Son RC, Choe SL (2017) Influence of mechanical alloying on the microstructure and mechanical properties of powder metallurgy Ti2AlNb-based alloy. Powder Technol 317:133–141. London

    Article  CAS  Google Scholar 

  • Sim KH, Wang G, Kim TJ, Ju KS (2018) Fabrication of a high strength and ductility Ti–22Al–25Nb alloy from high energy ball-milled powder by spark plasma sintering. J Alloys Compd 741:1112–1120

    Article  CAS  Google Scholar 

  • Suárez M, Fernández A, Menéndez JL, Torrecillas R, Kessel HU, Hennicke J, Kessel T (2013) Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. In: Sintering applications. Intech, Rijeka

    Google Scholar 

  • Tabrizi SG, Sajjadi SA, Babakhani A, Lu W (2015) Influence of spark plasma sintering and subsequent hot rolling on microstructure and flexural behavior of in-situ TiB and TiC reinforced Ti6Al4V composite. Mater Sci Eng A 624:271–278

    Article  Google Scholar 

  • Tang CY, Wong CT, Zhang LN et al (2013) In situ formation of Ti alloy/TiC porous composites by rapid microwave sintering of Ti6Al4V/MWCNTs powder. J Alloys Compd 557:67–72

    Article  CAS  Google Scholar 

  • Teber A, Schoenstein F, Têtard F, Abdellaoui M, Jouini N (2012) Effect of SPS process sintering on the microstructure and mechanical properties of nanocrystalline TiC for tools application. Int J Refract Met Hard Mater 30(1):64–70

    Article  CAS  Google Scholar 

  • Veiga C, Davim JP, Loureiro AJR (2012) Properties and applications of titanium alloys: a brief review. Rev Adv Mater Sci 32(2):133–148

    CAS  Google Scholar 

  • Wei S, Zhanga Z et al (2012) Effect of Ti content and sintering temperature on the microstructures and mechanical properties of TiB reinforced titanium composites synthesized by SPS process. Mater Sci Eng A 560:249–255

    Article  Google Scholar 

  • Weston SN, Derguti F, Tudball A, Jackson M (2015) Spark plasma sintering of commercial and development titanium alloy powders. J Mater Sci 50:4860–4878. https://doi.org/10.1007/s10853-015-9029-6

    Article  CAS  Google Scholar 

  • www.substech.com/dokuwiki/doku

  • Yamanoglu R, Daoud I, Olevsky EA (2018) Spark plasma sintering versus hot pressing- densification, bending strength, microstructure, and tribological properties of Ti5Al2.5Fe alloys. Powder Metall 61(2):178–186

    Article  CAS  Google Scholar 

  • Yang YF, Qian M (2015) Spark plasma sintering and hot pressing of titanium and titanium alloys. In: Titanium powder metallurgy. Butterworth-heinemann, Boston, pp 219–235

    Chapter  Google Scholar 

Download references

Acknowledgments

The author would like to appreciate the National Research Foundation (South Africa), Centre for Nanoengineering and Tribocorrosion, University of Johannesburg, South Africa, and Institute for Nanoengineering Research, Tshwane University of Technology, South Africa.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ayodele, O.O., Shongwe, M.B., Obadele, B.A., Olubambi, P.A. (2019). Spark Plasma Sintering of Titanium-Based Materials. In: Cavaliere, P. (eds) Spark Plasma Sintering of Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-05327-7_23

Download citation

Publish with us

Policies and ethics