Skip to main content

WAREC-1 – A Four-Limbed Robot with Advanced Locomotion and Manipulation Capabilities

  • Chapter
  • First Online:
Disaster Robotics

Abstract

This chapter introduces a novel four-limbed robot, WAREC-1, that has advanced locomotion and manipulation capability with versatile locomotion styles. At disaster sites, there are various types of environments through which a robot must traverse, such as rough terrain filled with rubbles, narrow places, stairs, and vertical ladders. WAREC-1 moves in hazardous environments by transitioning among various locomotion styles, such as bipedal/quadrupedal walking, crawling, and ladder climbing. WAREC-1 has identically structured limbs with 28 degrees of freedom (DoF) in total with 7-DoFs in each limb. The robot is 1,690 mm tall when standing on two limbs, and weighs 155 kg. We developed three types of actuator units with hollow structures to pass the wiring inside the joints of WAREC-1, which enables the robot to move on rubble piles by creeping on its stomach. Main contributions of our research are following five topics: (1) Development of a four-limbed robot, WAREC-1. (2) Simultaneous localization and mapping (SLAM) using laser range sensor array. (3) Teleoperation system using past image records to generate a third-person view. (4) High-power and low-energy hand. (5) Lightweight master system for telemanipulation and an assist control system for improving the maneuverability of master-slave systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asama, H., Tadokoro, S., Setoya, H.: In: COCN (Council on Competitiveness-Nippon) Project on Robot Technology Development and Management for Disaster Response. IEEE Region 10 Humanitarian Technology Conference 2013 (2013)

    Google Scholar 

  2. Boston Dynamics (2018). http://www.bostondynamics.com/robot_Atlas. Accessed 1 Mar 2018

  3. Butterfas, J., Grebenstein, M., Liu, H.: DLR-hand II: next generation of a dextrous robot hand. In: Proceedings of 2001 IEEE International Conference on Robotics and Automation, vol. 1, pp. 109–114 (2001)

    Google Scholar 

  4. Council on Competitiveness Nippon (COCN).: Establishment plan for a disaster response robot center. The 2013 Report of Council on Competitiveness Nippon (COCN) (2013)

    Google Scholar 

  5. Darpa Robotics Challenge Finals (2015).https://web.archive.org/web/20160428005028/http://www.darparoboticschallenge.org. Accessed 1 Mar 2018

  6. Dellin, C.M., Strabala, K., Haynes, G.C., Stager, D., Srinivasa, S.S.: Guided manipulation planning at the darpa robotics challenge trials. Experimental Robotics, pp. 149–163. Springer, Cham (2016)

    Chapter  Google Scholar 

  7. Dexterous Hand - Shadow Robot Company (2018). https://www.shadowrobot.com/products/dexterous-hand/. Accesssed 1 Aug 2018

  8. Endo, T., Kawasaki, H., Mouri, T., Ishigure, Y., Shimomura, H., Matsumura, M., Koketsu, K.: Five-fingered haptic interface robot: HIRO III. IEEE Trans. Haptics 4(1), 14–27 (2011)

    Article  Google Scholar 

  9. Fernando, C. L., Furukawa, M., Kurogi, T., Kamuro, S., Minamizawa, K., Tachi, S.: Design of TELESAR V for transferring bodily consciousness in telexistence. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5112–5118 (2012)

    Google Scholar 

  10. Fogel, D.B.: Evolutionary Computation, IEEE Press (1995)

    Google Scholar 

  11. Fujii, S., Inoue, K., Takubo, T., Mae, Y., Arai, T.: Ladder climbing control for limb mechanism robot ‘ASTERISK’. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3052–3057 (2008)

    Google Scholar 

  12. Fukuda, T., Hasegawa, Y., Doi, M., Asano, Y.: Multi-locomotion robot-energy-based motion control for dexterous brachiation. In: Proceedings of IEEE International Conference of Robotics and Biomimetics, pp. 4–9 (2005)

    Google Scholar 

  13. Hashimoto, K., Kondo, H., Lim, H.O., Takanishi, A.: Online walking pattern generation using FFT for humanoid robots. Motion and Operation Planning of Robotic Systems. Background and Practical Approaches, pp. 417–438. Springer International Publishing, Berlin (2015)

    Google Scholar 

  14. Hashimoto, K., Koizumi, A., Matsuzawa, T., Sun, X., Hamamoto, S., Teramachi, T., Sakai, N., Kimura, S., Takanishi, A.: Development of disaster response robot for extreme environments: –4th report: proposition of crawling motion for four-limbed robot–(in Japanese). In: Proceedings of 2016 JSME Annual Conference on Robotics and Mechatronics (Robomec), pp. 1A2–09b7 (2016)

    Google Scholar 

  15. Hirose, S., Tsukagoshi, H., Yoneda, K.: Normalized energy stability margin and its contour of walking vehicles on rough terrain. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 181–186 (2001)

    Google Scholar 

  16. Iida, H., Hozumi, H., Nakayama, R.: Developement of ladder climbing robot LCR-1. J. Robot. Machatron. 1, 311–316 (1989)

    Article  Google Scholar 

  17. Jacoff, A., Messina, E.: Urban search and rescue robot performance standards progress update. In: Proceedings of SPIE 6561, Unmanned Systems Technology IX, vol. 65611L, pp. 29–34. (2007)

    Google Scholar 

  18. Jacoff, A., Downs, A., Virts, A., Messina, E.: Stepfield pallets: repeatable terrain for evaluating robot mobility. In Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, pp. 29–34 (2008)

    Google Scholar 

  19. Kamezaki, M., Eto, T., Sato, R., Iwata, H.: A scale-gain adjustment method for master-slave system considering complexity, continuity, and time limitation in disaster response work. In: JSME Robotics and Mechatronics Conference, pp. 2A2–M02 (2018) (in Japanese)

    Article  Google Scholar 

  20. Karumanchi, S., Edelberg, K., Baldwin, I., Nash, J., Reid, J., Bergh, C., Leichty, J., Carpenter, K., Shekels, M., Gildner, M., Newill-Smith, D., Carlton, J., Koehler, J., Dobreva, T., Frost, M., Hebert, P., Borders, J., Ma, J., Douillard, B., Backes, P., Kennedy, B., Satzinger, B., Lau, C., Byl, K., Shankar, K., Burdick, J.: Team RoboSimian: semi-autonomous mobile manipulation at the 2015 DARPA robotics challenge finals. J. Field Robot. 34(2), 305–332 (2016)

    Article  Google Scholar 

  21. Kawasaki, H., Komatsu, T., Uchiyama, K.: Dexterous anthropomorphic robot hand with distributed tactile sensor: gifu hand II. IEEE/ASME Trans. Mechatron. 7(3), 296–303 (2002)

    Article  Google Scholar 

  22. Kitai, S., Toda, Y., Takesue, N., WADA, K., Kubota, N.: Intelligential control of variable sokuiki sensor array for environmental sensing (in Japanese). In: 2017 JSME Annual Conference on Robotics and Mechatronics (Robomec), pp. 1P1–Q06 (2017)

    Article  Google Scholar 

  23. Kitai, S., Toda, Y., Takesue, N., Wada, K., Kubota, N.: Intelligent control of variable ranging sensor array using multi-objective behavior coordination. Intelligent Robotics and Applications, ICIRA 2018. Lecture Notes in Computer Science, vol. 10984. Springer, Berlin (2018)

    Google Scholar 

  24. Kitani M., Asami, R., Sawai Y., Sato N., Fujiwara T., Endo T., Matuno F., Morita Y.: Tele-operation for legged robot by virtual marionette system (in Japanese). In: 2017 JSME Annual Conference on Robotics and Mechatronics (Robomec), pp. 1P1–Q03 (2017)

    Article  Google Scholar 

  25. Kojima, K., Karasawa, T., Kozuki, T., Kuroiwa, E., Yukizaki, S., Iwaishi, S., Ishikawa, T., Koyama, R., Noda, S., Sugai, F., Nozawa,S., Kakiuchi, Y., Okada, K., Inaba, M.: Development of life-sized high-power humanoid robot JAXON for real-world use. In: Proceedings of IEEE-RAS International Conference on Humanoid Robots, pp. 838–843 (2015)

    Google Scholar 

  26. Kondak, K, Huber, F., Schwarzbach, M., Laiacker, M., Sommer, D., Bejar, M., Ollero, A.: Aerial manipulation robot composed of anautonomous helicopter and a 7 degrees of freedom industrial manipulator. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2107–2112 (2014)

    Google Scholar 

  27. Lewis, M., Wang, J., Hughes, S., Liu, X.: Experiments with attitude: attitude displays for teleoperation. In: 2003 IEEE International Conference on Systems, Man and Cybernetics, pp. 1345–1349 (2003)

    Google Scholar 

  28. Lim, J., Lee, I., Shim, I., Jung, H., Joe, H.M., Bae, H., Sim, O., Oh, J., Jung, T., Shin, S., Joo, K., Kim, M., Lee, K., Bok, Y., Choi, D.G., Cho, B., Kim, S., Heo, J., Kim, I., Lee, J., Kwon, I.S., Oh, J.H.: Robot system of DRC-HUBO+ and control strategy of team KAIST in DARPA robotics challenge finals. J. Field Robot. 34(4), 802–829 (2017)

    Article  Google Scholar 

  29. Maeda, K., Osuka, K.: Error analysis of FST for accuracy improvement. In: Proceedings of SICE Annual Conference, pp. 1698–1700 (2010)

    Google Scholar 

  30. Marion, P., Fallon, M., Deits, R., Valenzuela, A., D’Arpino, C.P., Izatt, G., Manuelli, L., Antone, M., Dai, H., Koolen, T., Carter, J., Kuindersma, S., Tedrake, R.: Director: a user interface designed for robot operation with shared autonomy. J. Field Robot. 34(2), 262–280 (2017)

    Article  Google Scholar 

  31. Matsumoto, Y., Namiki, A., Negishi, K.: Development of a safe and operable teleoperated robot system controlled with a lightweight and high-operable master device. In: Proceedings of IEEE/SICE International Symposium System Integration, pp. 552–557 (2015)

    Google Scholar 

  32. Matsuzawa, T., Koizumi, A., Hashimoto, K., Sun, X., Hamamoto, S., Teramachi, T., Kimura, S., Sakai, N., Takanishi, A.: Crawling gait for four-limbed robot and simulation on uneven terrain. In: Proceedings of the 16th IEEE-RAS International Conference on Humanoid Robots, pp. 1270–1275 (2016)

    Google Scholar 

  33. Minamizawa, K., Fukamachi, S., Kajimoto, H., Kawakami, N., Tachi, S.: Gravity grabber: wearable haptic display to present virtual mass sensation. In: ACM SIGGRAPH (2007)

    Google Scholar 

  34. Mouri, T., Kawasaki, H., Yoshikawa, K., Takai, J., Ito, S.: Anthropomorphic Robot Hand: Gifu Hand III. In: Proceedings of the 2002 International Conference on Control, Automation and Systems, pp. 1288–1293 (2002)

    Google Scholar 

  35. Mouri, T., Kawasaki, H.: Humanoid robots human-like machines. A Novel Anthropomorphic Robot Hand and its Master Slave System, pp. 29–42. I-Tech Education and Publishing (2007)

    Google Scholar 

  36. Nakano, E., Nagasaka, S.: Leg-wheel robot: a futuristic mobile platform for forestry industry. In: Proceedings of IEEE/Tsukuba International Workshop on Advanced Robotics, pp. 109–112 (1993)

    Google Scholar 

  37. Namiki, A., Matsumoto, Y., Liu, Y., Maruyama, T.: Vision-based predictive assist control on master-slave systems. In: Proceedings of IEEE International Conference Robotics and Automation, pp. 5357–5362 (2017)

    Google Scholar 

  38. Negishi, K., Liu, Y., Maruyama, T., Matsumoto, Y., Namiki, A.: Operation assistance using visual feedback with considering human intention on master-slave systems. In: Proceedings of IEEE International Conference Robotics and Biomimetics, pp. 2169–2174 (2016)

    Google Scholar 

  39. Niemeyer, G., Preusche, C., Hirzinger, G.: Telerobotics. Springer Handbook of Robotics, pp. 741–757. Springer, Berlin (2008)

    Chapter  Google Scholar 

  40. No Electricity Locking System — Adamant Namiki Precision Jewel Co., Ltd (2018). https://www.ad-na.com/en/product/dccorelessmotor/dynalox.html. Accessed 1 Aug 2018

  41. Ohmichi, T., Ibe, T.: Development of vehicle with legs and wheels. J. Robot. Soc. Jpn. 2(3), 244–251 (1984)

    Article  Google Scholar 

  42. Passenberg, C., Peer, A., Buss, M.: A survey of environment-, operator-, and task-adapted controllers for teleoperation systems. Mechatronics 20(7), 787–801 (2010)

    Article  Google Scholar 

  43. Pounds, P., Bersak, D., Dollar, A.: Grasping from the air: hovering capture and load stability. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2491–2498 (2011)

    Google Scholar 

  44. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3(3.2), p. 5 (2009)

    Google Scholar 

  45. Ramirez Rebollo, D.R., Ponce, P., Molina, A.: From 3 fingers to 5 fingers dexterous hands. Adv. Robot. 31(19–20), 1051–1070 (2017)

    Article  Google Scholar 

  46. Rechenberg, I.: Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution. FrommannHolzboog Verlag, Stuttgart (1973)

    Google Scholar 

  47. Rosenberg, L.B.: Virtual fixtures: perceptual tools for telerobotic manipulation. In: Virtual Reality Annual International Symposium, pp. 76–82. IEEE (1993)

    Google Scholar 

  48. Rebula, J.R., Neuhaus, P.D., Bonnlander, B.V., Johnson, M.J., Pratt,J.E.: A controller for the littledog quadruped walking on rough terrain. In: 2007 IEEE International Conference on Robotics and Automation (ICRA), pp. 1467–1473 (2007)

    Google Scholar 

  49. Sasaki, Y., Tanabe, R., Takemura, H.: Probabilistic 3D sound source mapping using moving microphone array. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1293–1298 (2016)

    Google Scholar 

  50. Schwarz, M., Rodehutskors, T., Droeschel, D., Beul, M., Schreiber, M., Araslanov, N., Ivanov, I., Lenz, C., Razlaw, J., Schüller, S., Schwarz, D., Topalidou-Kyniazopoulou, A., Behnke, S.: NimbRo rescue: solving disaster-response tasks with the mobile manipulation robot momaro. J. Field Robot. 34(2), 400–425 (2016)

    Article  Google Scholar 

  51. Schwefel, H.-P.: Kybernetische evolution als strategie der experimentellen forschung in der strmungstechnik. Diploma thesis, Technical University of Berlin (1965)

    Google Scholar 

  52. Shirasaka, S., Machida, T., Igarashi, H., Suzuki, S., Kakikura, M.: Leg selectable interface for walking robots on irregular terrain. In: 2006 SICE-ICASE International Joint Conference, pp. 4780–4785 (2006)

    Google Scholar 

  53. Shiroma, N., Sato, N., Chiu, Y., Matsuno, F.,: Study on effective camera images for mobile robot teleoperation. In: 2004 IEEE International Workshop on Robot and Human Interactive Communication (RO-MAN), pp. 107–112 (2004)

    Google Scholar 

  54. Start Production Faster - Robotiq (2018). https://robotiq.com/. Accessed 1 Aug 2018

  55. Stentz, A., Herman, H., Kelly, A., Meyhofer, E., Haynes, G.C., Stager, D., Zajac, B., Bagnell, J.A., Brindza, J., Dellin, C., George, M., Gonzalez-Mora, J., Hyde, S., Jones, M., Laverne, M., Likhachev, M., Lister, L., Powers, M., Ramos, O., Ray, J., Rice, D., Scheifflee, J., Sidki, R., Srinivasa, S., Strabala, K., Tardif, J.P., Valois, J.S., Weghe, J.M.V., Wagner, M., Wellington, C.: CHIMP, the CMU highly intelligent mobile platform. J. Field Robot. 32(2), 209–228 (2015)

    Article  Google Scholar 

  56. Sugimoto, M., Kagotani, G., Nii, H., Shiroma, N., Inami, M., Matsuno, F.: Time follower vision: a teleoperation interface with past images. IEEE Comput. Graph. Appl. 25(1), 54–63 (2005)

    Article  Google Scholar 

  57. Sun, X., Hashimoto, K., Hamamoto, S., Koizumi, A., Matsuzawa, T.,Teramachi, T., Takanishi, A.: Trajectory generation for ladder climbing motion with separated path and time planning. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5782–5788 (2016)

    Google Scholar 

  58. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  59. Tsagarakis, N.G., Caldwell, D.G., Negrello, F., Choi, W., Baccelliere, L., Loc, V., Noorden, J., Muratore, L., Margan, A., Cardellino, A., Natale, L., Mingo Homan, E., Dallali, H., Kashiri, N., Malzahn, J., Lee, J., Kryczka, P., Kanoulas, D., Garabini, M., Catalano, M., Ferrati, M., Varricchio, V., Pallottino, L., Pavan, C., Bicchi, A., Settimi, A., Rocchi, A., Ajoudani, A.: WALK-MAN: a high-performance humanoid platform for realistic environments. J. Field Robot. 34(7), 1225–1259 (2017)

    Article  Google Scholar 

  60. Vaillant, J., Kheddar, A., Audren, H., Keith, F., Brossette, S., Escande, A., Kaneko, K., Morisawa, M., Gergondet, P., Yoshida, E., Kajita, S., Kenehiro, F.: Multi-contact vertical ladder climbing with a HRP-2 humanoid. Auton. Robot. 40(3), 561–580 (2016)

    Article  Google Scholar 

  61. Yamauchi, B.: PackBot: a versatile platform for military robotics. In: Defense and Security, International Society for Optics and Photonics, pp. 228–237 (2004)

    Google Scholar 

  62. Yoneda, H., Sekiyama, K., Hasegawa, Y., Fukuda, T.: Vertical ladder climbing motion with posture control for multi-locomotion robot. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3579–3684 (2008)

    Google Scholar 

  63. Yoshida, T., Nagatani, K., Tadokoro, S., Nishimura, T., Koyanagi, E.: Improvements to the rescue robot quince toward future indoor surveillance missions in the fukushima daiichi nuclear power plant. Field and Service Robotics, vol. 92, pp. 19–32. Springer, Berlin (2013)

    Chapter  Google Scholar 

  64. Yoshiike, T., Kuroda, M., Ujino, R., Kaneko, H., Higuchi, H., Iwasaki, S., Kanemoto, Y., Asatani, M., Koshiishi, T.: Development of experimental legged robot for inspection and disaster response in plants. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4869–4876 (2017)

    Google Scholar 

  65. Yoshikawa, T.: Analysis and control of robot manipulators with redundancy. In: Proceedings of Robotics Research: The First International Symposium, pp. 735–747 (1984)

    Google Scholar 

Download references

Acknowledgements

This study was conducted with the support of Research Institute for Science and Engineering, Waseda University; Future Robotics Organization, Waseda University, and as a part of the humanoid project at the Humanoid Robotics Institute, Waseda University. This research was partially supported by SolidWorks Japan K. K; DYDEN Corporation; and KITO Corporation. This work was supported by Impulsing Paradigm Change through Disruptive Technologies (ImPACT) Tough Robotics Challenge program of Japan Science and Technology (JST) Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Hashimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hashimoto, K. et al. (2019). WAREC-1 – A Four-Limbed Robot with Advanced Locomotion and Manipulation Capabilities. In: Tadokoro, S. (eds) Disaster Robotics. Springer Tracts in Advanced Robotics, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-05321-5_7

Download citation

Publish with us

Policies and ethics