Skip to main content

From 3D to 1D and Back to 2D

  • Chapter
  • First Online:
Correlations in Low-Dimensional Quantum Gases

Part of the book series: Springer Theses ((Springer Theses))

  • 310 Accesses

Abstract

We perceive the world as what mathematicians call a three-dimensional (3D) Euclidian space, providing a firm natural framework for geometry and physics until the modern times. Higher-dimensional real and abstract spaces have pervaded physics in the course of the twentieth century, through statistical physics where the number of degrees of freedom is comparable to the Avogadro number, quantum physics where huge Hilbert spaces are often involved, general relativity where in addition to a fourth spacetime dimension one considers curvature of a Riemannian manifold, or string theory where more dimensions are considered before compactification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flatland: A Romance of Many Dimensions (1884)

    Google Scholar 

  2. C.F. Roos, A. Alberti, D. Meschede, P. Hauke, H. Häffner, Revealing quantum statistics with a pair of distant atoms. Phys. Rev. Lett. 119, 160401 (2017)

    Article  ADS  Google Scholar 

  3. J.M. Leinaas, J. Myrrheim, On the theory of identical particles. Il Nuovo Cimento 37, 1 (1977)

    Article  Google Scholar 

  4. F. Wilczek, Quantum mechanics of Fractional-Spin particles. Phys. Rev. Lett. 49, 957 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  5. F.D.M. Haldane, Fractional statistics in arbitrary dimensions: a generalization of the pauli principle. Phys. Rev. Lett. 67, 937 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Kundu, Exact solution of double \(\delta \) function bose gas through an interacting Anyon gas. Phys. Rev. Lett. 83, 1275 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M.T. Batchelor, X.-W. Guan, J.-S. He, The Bethe ansatz for 1D interacting anyons. J. Stat. Mech. P03007 (2007)

    Google Scholar 

  8. O.I. Pâţu, V.E. Korepin, D.V. Averin, Correlation functions of one-dimensional Lieb-Liniger anyons. J. Phys. A 40, 14963 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. P. Calabrese, M. Mintchev, Correlation functions of one-dimensional anyonic fluids. Phys. Rev. B 75, 233104 (2007)

    Article  ADS  Google Scholar 

  10. L. Piroli, P. Calabrese, Exact dynamics following an interaction quench in a one-dimensional anyonic gas. Phys. Rev. A 96, 023611 (2017)

    Article  ADS  Google Scholar 

  11. W. Pauli, The connection between spin and statistics. Phys. Rev. 58, 716 (1940)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. C. Kollath, U. Schollwöck, W. Zwerger, Spin-charge separation in cold fermi gases: a real time analysis. Phys. Rev. Lett. 95, 176401 (2005)

    Article  ADS  Google Scholar 

  13. A. Kleine, C. Kollath, I.P. McCulloch, T. Giamarchi, U. Schollwöck, Spin-charge separation in two-component Bose gases. Phys. Rev. A 77, 013607 (2008)

    Article  ADS  Google Scholar 

  14. N.D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  15. C.N. Yang, Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Rev. Mod. Phys. 34, 694 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  16. R. Hanbury Brown, R.Q. Twiss, A Test of a new type of stellar interferometer on Sirius. Nature 178, 1046–1048 (1956)

    Article  ADS  Google Scholar 

  17. N. Pottier, Nonequilibrium Statistical Physics, Linear irreversible processes (Oxford Graduate Texts, 2010)

    Google Scholar 

  18. T. Kinoshita, T. Wenger, D.S. Weiss, A quantum Newton’s cradle. Nature 440, 900–903 (2006)

    Article  ADS  Google Scholar 

  19. P. Calabrese, J. Cardy, Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 136801 (2006)

    Article  ADS  Google Scholar 

  20. M. Rigol, V. Dunjko, V. Yurovsky, M. Olshanii, Relaxation in a completely integrable many-body quantum system: an Ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007)

    Article  ADS  Google Scholar 

  21. J.-S. Caux, F.H.L. Essler, Time evolution of local observables after quenching to an integrable model. Phys. Rev. Lett. 110, 257203 (2013)

    Article  ADS  Google Scholar 

  22. J. De Nardis, B. Wouters, M. Brockmann, J.-S. Caux, Solution for an interaction quench in the Lieb-Liniger Bose gas. Phys. Rev. A 89, 033601 (2014)

    Article  ADS  Google Scholar 

  23. Y.Y. Atas, I. Bouchoule, D.M. Gangardt, K.V. Kheruntsyan, Collective many-body bounce in the breathing-mode oscillations of a Tonks-Girardeau gas. Phys. Rev. A 96, 041605(R) (2017)

    Article  ADS  Google Scholar 

  24. J. De Nardis, M. Panfil, Exact correlations in the Lieb-Liniger model and detailed balance out of equilibrium. SciPost Phys. 1, 015 (2016)

    Article  ADS  Google Scholar 

  25. A. Eckardt, Colloquium: atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 89, 011004 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. J. Eisert, M. Cramer, M.B. Plenio, Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. D. Jérome, A. Mazaud, M. Ribault, K. Bechgaard, Superconductivity in a synthetic organic conductor (TMTSF)2PF 6. J. de Physique Lettres 41(4), 95–98 (1980)

    Article  Google Scholar 

  28. J.G. Bednorz, K.A.Z. Mueller, Possible high Tc superconductivity in the Ba-La-Cu-O system. Zeitschrift für Physik B 64(2), 189–193 (1986)

    Article  ADS  Google Scholar 

  29. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 5696 (2004)

    Article  Google Scholar 

  30. J.E. Moore, L. Balents, Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306(R) (2007)

    Article  ADS  Google Scholar 

  31. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, New York, 1999)

    Google Scholar 

  32. M. Lewenstein, A. Sanpera, V. Ahufigar, B. Damski, A.S. De, U. Sen, Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56, 243–379 (2017)

    Article  ADS  Google Scholar 

  33. I. Bloch, J. Dalibard, S. Nascimbène, Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012)

    Article  Google Scholar 

  34. R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  35. A.N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, S. Jochim, From few to many: observing the formation of a fermi sea one atom at a time. Science 342, 457 (2013)

    Article  ADS  Google Scholar 

  36. P. Courteille, R. Freeland, D. Heinzen, F. van Abeelen, B. Verhaar, Observation of a Feshbach resonance in cold atom scattering. Phys. Rev. Lett. 81, 69 (1998)

    Article  ADS  Google Scholar 

  37. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  38. A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, T. Pfau, Bose-Einstein condensation of chromium. Phys. Rev. Lett. 94, 160401 (2005)

    Article  ADS  Google Scholar 

  39. I. Ferrier-Barbut, M. Delehaye, S. Laurent, A.T. Grier, M. Pierce, B.S. Rem, F. Chevy, C. Salomon, A mixture of Bose and Fermi superfluids. Science 345, 1035–1038 (2014)

    Article  ADS  Google Scholar 

  40. T.-L. Ho, Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81, 742 (1998)

    Article  ADS  Google Scholar 

  41. D.M. Stamper-Kurn, M.R. Andrews, A.P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, W. Ketterle, Optical confinement of a Bose-Einstein condensate. Phys. Rev. Lett. 80, 2027–2030 (1998)

    Article  ADS  Google Scholar 

  42. A.L. Gaunt, T.F. Schmidutz, I. Gotlibovych, R.P. Smith, Z. Hadzibabic, Bose-Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 110, 200406 (2013)

    Article  ADS  Google Scholar 

  43. C. Zipkes, S. Palzer, C. Sias, M. Köhl, A trapped single ion inside a Bose-Einstein condensate. Nature 464, 388–391 (2010)

    Article  ADS  Google Scholar 

  44. S. Palzer, C. Zipkes, C. Sias, M. Köhl, Quantum transport through a Tonks-Girardeau gas. Phys. Rev. Lett. 103, 150601 (2009)

    Article  ADS  Google Scholar 

  45. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492–1505 (1958)

    Article  ADS  Google Scholar 

  46. J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Direct observation of Anderson localization of matter-waves in a controlled disorder. Nature 453, 891 (2008)

    Article  ADS  Google Scholar 

  47. D.M. Basko, I.L. Aleiner, B.L. Altshuler, Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126 (2006)

    Article  ADS  MATH  Google Scholar 

  48. J.-Y. Choi, S. Hild, J. Zeiher, P. Schauss, A. Rubio-Abadal1, T. Yefsah, V. Khemani, D.A. Huse, I. Bloch, C. Gross, Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. S. Dettmer, D. Hellweg, P. Ryytty, J.J. Arlt, W. Ertmer, K. Sengstock, D.S. Petrov, G.V. Shlyapnikov, H. Kreutzmann, L. Santos, M. Lewenstein, Observation of Phase fluctuations in elongated Bose-Einstein condensates. Phys. Rev. Lett. 87, 160406 (2001)

    Article  ADS  Google Scholar 

  50. J. Esteve, J.-B. Trebbia, T. Schumm, A. Aspect, C.I. Westbrook, I. Bouchoule, Observations of density fluctuations in an elongated Bose gas: ideal gas and quasicondensate regimes. Phys. Rev. Lett. 96, 130403 (2006)

    Article  ADS  Google Scholar 

  51. Y.-J. Lin, R.L. Compton, K. Jiménez-García, J.V. Porto, I.B. Spielman, Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009)

    Article  ADS  Google Scholar 

  52. J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Öhberg, Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523 (2011)

    Article  ADS  Google Scholar 

  53. M. Atala, M. Aidelsburger, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Observation of chiral currents with ultracold atoms in bosonic ladders. Nat. Phys. 10, 588–593 (2014)

    Article  Google Scholar 

  54. H.M. Price, O. Zilberberg, T. Ozawa, I. Carusotto, N. Goldman, Four-dimensional quantum hall effect with ultracold atoms. Phys. Rev. Lett. 115, 195303 (2015)

    Article  ADS  Google Scholar 

  55. V. Galitski, I.B. Spielman, Spin-orbit coupling in quantum gases. Nature 494, 49–54 (2013)

    Article  ADS  Google Scholar 

  56. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  57. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  58. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687 (1997)

    Article  ADS  Google Scholar 

  59. A. Einstein, Quantentheorie des einatomigen idealen Gases (Sitzungsber. Kgl. Preuss. Akad. Wiss., 1924), p. 261

    Google Scholar 

  60. A. Einstein, Quantentheorie des einatomigen idealen Gases (Sitzungsber. Kgl. Preuss. Akad. Wiss., 1925), p. 3

    Google Scholar 

  61. W. Ketterle, N.J. Van Druten, Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37, 181–236 (1996)

    Article  ADS  Google Scholar 

  62. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  63. B. DeMarco, D.S. Jin, Onset of fermi degeneracy in a trapped atomic gas. Science 285, 1703–1706 (1999)

    Article  Google Scholar 

  64. C.A. Regal, M. Greiner, D.S. Jin, Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004)

    Article  ADS  Google Scholar 

  65. M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83, 2498 (1999)

    Article  ADS  Google Scholar 

  66. K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84, 806 (2000)

    Article  ADS  Google Scholar 

  67. J.W. Fleischer, M. Segev, M.K. Efremidis, D.N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147 (2003)

    Article  ADS  Google Scholar 

  68. Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, J. Dalibard, Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006)

    Article  ADS  Google Scholar 

  69. J.M. Kosterlitz, D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys. 6(7), 1181–1203 (1973)

    Article  ADS  Google Scholar 

  70. B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G.V. Shlyapnikov, T.W. Hänsch, I. Bloch, Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277 (2004)

    Article  ADS  Google Scholar 

  71. T. Kinoshita, T. Wenger, D.S. Weiss, Observation of a one-dimensional Tonks-Girardeau gas. Science 305, 1125 (2004)

    Article  ADS  Google Scholar 

  72. M. Girardeau, Relationship between systems of impenetrable Bosons and fermions in one dimension. J. Math. Phys. 1, 516 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable Bosons. Phys. Rev. Lett. 81, 938 (1998)

    Article  ADS  Google Scholar 

  74. K. Huang, C.N. Yang, Quantum-mechanical many-body problem with hard-sphere interaction. Phys. Rev. 105, 767 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. E.H. Lieb, R. Seiringer, J. Yngvason, One-dimensional behavior of dilute, trapped Bose gases. Commun. Math. Phys. 244, 347 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. E.H. Lieb, J.P. Solovej, R. Seiringer, J. Yngvason, The Mathematics of the Bose Gas and its Condensation (Oberwolfach Seminars, 2005). 978-3-7643-7336-8

    Google Scholar 

  77. S. Lammers, I. Boettcher, C. Wetterich, Dimensional crossover of nonrelativistic bosons. Phys. Rev. A 93, 063631 (2016)

    Article  ADS  Google Scholar 

  78. I. Bloch, Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23–30 (2005)

    Article  Google Scholar 

  79. A.H. van Amerongen, J.J.P. van Es, P. Wicke, K.V. Kheruntsyan, N.J. van Druten, Yang-Yang thermodynamics on an atom chip. Phys. Rev. Lett. 100, 090402 (2008)

    Article  Google Scholar 

  80. R. Doll, M. Näbauer, Experimental proof of magnetic flux quantization in a superconducting ring. Phys. Rev. Lett. 7, 51 (1961)

    Article  ADS  Google Scholar 

  81. R.A. Webb, S. Washburn, C.P. Umbach, R.B. Laibowitz, Observation of \(\frac{h}{e}\) Aharonov-Bohm oscillations in normal-metal rings. Phys. Rev. Lett. 54, 2696 (1985)

    Article  ADS  Google Scholar 

  82. Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. H. Bluhm, N.C. Koshnick, J.A. Bert, M.E. Huber, K.A. Moler, Persistent currents in normal metal rings. Phys. Rev. Lett. 102, 136802 (2009)

    Article  ADS  Google Scholar 

  84. A.S. Arnold, C.S. Garvie, E. Riis, Large magnetic storage ring for Bose-Einstein condensates. Phys. Rev. A 73, 041606(R) (2006)

    Article  ADS  Google Scholar 

  85. M. Cominotti, D. Rossini, M. Rizzi, F. Hekking, A. Minguzzi, Optimal persistent currents for interacting Bosons on a ring with a gauge field. Phys. Rev. Lett. 113, 025301 (2014)

    Article  ADS  Google Scholar 

  86. B.T. Seaman, M. Krämer, D.Z. Anderson, M.J. Holland, Atomtronics: ultracold-atom analogs of electronic devices. Phys. Rev. A 75, 023615 (2007)

    Article  ADS  Google Scholar 

  87. J.A. Sauer, M.D. Barrett, M.S. Chapman, Storage ring for neutral atoms. Phys. Rev. Lett. 87, 270401 (2001)

    Article  Google Scholar 

  88. S. Gupta, K.W. Murch, K.L. Moore, T.P. Purdy, D.M. Stamper-Kurn, Bose-Einstein condensation in a circular waveguide. Phys. Rev. Lett. 95, 143201 (2005)

    Article  ADS  Google Scholar 

  89. J.D. Pritchard, A.N. Dinkelaker, A.S. Arnold, P.F. Griffin, E. Riis, Demonstration of an inductively coupled ring trap for cold atoms. New J. Phys. 14, 103047 (2012)

    Article  ADS  Google Scholar 

  90. C. Ryu, M.F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, W.D. Phillips, Observation of persistent flow of a Bose-Einstein condensate in a toroidal trap. Phys. Rev. Lett. 99, 260401 (2007)

    Article  ADS  Google Scholar 

  91. A. Ramanathan, K.C. Wright, S.R. Muniz, M. Zelan, W.T. Hill, C.J. Lobb, K. Helmerson, W.D. Phillips, G.K. Campbell, Superflow in a Toroidal Bose-Einstein condensate: an atom circuit with a tunable weak link. Phys. Rev. Lett. 106, 130401 (2011)

    Article  ADS  Google Scholar 

  92. C. Ryu, P.W. Blackburn, A.A. Blinova, M.G. Boshier, Experimental realization of Josephson junctions for an atom SQUID. Phys. Rev. Lett. 111, 205301 (2013)

    Article  ADS  Google Scholar 

  93. A. Kumar, N. Anderson, W.D. Phillips, S. Eckel, G.K. Campbell, S. Stringari, Minimally destructive, doppler measurement of a quantized flow in a ring-shaped Bose-Einstein condensate. New J. Phys. 18, 025001 (2016)

    Article  ADS  Google Scholar 

  94. S. Moulder, S. Beattie, R.P. Smith, N. Tammuz, Z. Hadzibabic, Quantized supercurrent decay in an annular Bose-Einstein condensate. Phys. Rev. A 86, 013629 (2012)

    Article  ADS  Google Scholar 

  95. G.E. Marti, R. Olf, D.M. Stamper-Kurn, Collective excitation interferometry with a toroidal Bose-Einstein condensate. Phys. Rev. A 91, 013602 (2015)

    Article  ADS  Google Scholar 

  96. O. Morizot, Y. Colombe, V. Lorent, H. Perrin, B.M. Garraway, Ring trap for ultracold atoms. Phys. Rev. A 74, 023617 (2006)

    Article  ADS  Google Scholar 

  97. M. Gildemeister, E. Nugent, B.E. Sherlock, M. Kubasik, B.T. Sheard, C.J. Foot, Trapping ultracold atoms in a time-averaged adiabatic potential. Phys. Rev. A 81, 031402(R) (2010)

    Article  ADS  Google Scholar 

  98. B.E. Sherlock, M. Gildemeister, E. Owen, E. Nugent, C.J. Foot, Time-averaged adiabatic ring potential for ultracold atoms. Phys. Rev. A 83, 043408 (2011)

    Article  ADS  Google Scholar 

  99. T.A. Bell, J.A.P. Glidden, L. Humbert, M.W.J. Bromley, S.A. Haine, M.J. Davis, T.W. Neely, M.A. Baker, H. Rubinsztein-Dunlop, Bose-Einstein condensation in large time-averaged optical ring potentials. New J. Phys. 18, 035003 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  100. A. Chakraborty, S.R. Mishra, S.P. Ram, S.K. Tiwari, H.S. Rawat, A toroidal trap for cold \({^{87}}\)Rb atoms using an rf-dressed quadrupole trap. J. Phys. B: At. Mol. Opt. Phys. 49, 075304 (2016)

    Article  ADS  Google Scholar 

  101. P. Navez, S. Pandey, H. Mas, K. Poulios, T. Fernholz, W. von Klitzing, Matter-wave interferometers using TAAP rings. New J. Phys. 18, 075014 (2016)

    Article  ADS  Google Scholar 

  102. L.D. Landau, The theory of a Fermi liquid. Sov. Phys. JETP 3, 920 (1957)

    MathSciNet  MATH  Google Scholar 

  103. L.D. Landau, Oscillations in a Fermi liquid. Sov. Phys. JETP 5, 101 (1957)

    MathSciNet  MATH  Google Scholar 

  104. E.M. Lifschitz, L.P. Pitaevskii, Landau and Lifschitz Course of Theoretical Physics Volume 9, Statistical Physics Part 2, Theory of Condensed Matter (Pergamon Press, 1980)

    Google Scholar 

  105. J. Voit, One-dimensional Fermi liquids. Rep. Prog. Phys. 58, 977 (1995)

    Article  ADS  Google Scholar 

  106. S.R. White, Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  107. U. Schollwöck, The density-matrix renormalization group. Rev. Mod. Phys. 77, 259 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. H.A. Bethe, Zur Theorie der Metalle I. Eigenwerte und Eigenfunktionen der linearen Atomkette. Z. Phys. 71, 205 (1931)

    Google Scholar 

  109. C.N. Yang, C.P. Yang, One-dimensional chain of anisotropic Spin-Spin interactions. I. Proof of Bethe’s hypothesis for ground state in a finite system. Phys. Rev. 150, 321 (1966)

    Article  ADS  Google Scholar 

  110. C.N. Yang, C.P. Yang, One-dimensional chain of anisotropic Spin-Spin interactions. II. Properties of the ground-state energy per lattice site for an infinite system. Phys. Rev. 150, 327 (1966)

    Article  ADS  Google Scholar 

  111. Lars Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117 (1944)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  112. T.D. Schultz, D.C. Mattis, E.H. Lieb, Two-dimensional ising model as a soluble problem of many fermions. Rev. Mod. Phys. 36, 856 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  113. E.H. Lieb, T.D. Schultz, D.C. Mattis, Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  114. E.H. Lieb, W. Liniger, Exact analysis of an interacting Bose Gas. I. the general solution and the ground state. Phys. Rev. 130, 1605 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  115. F. Calogero, Solution of a three-body problem in one dimension. J. Math. Phys. 10, 2191 (1969)

    Article  ADS  Google Scholar 

  116. F. Calogero, Solution of the one-dimensional N-Body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  117. J.B. McGuire, Study of exactly soluble one-dimensional N-Body problems. J. Math. Phys. 5, 622 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  118. F.A. Berezin, G.P. Phil, V.M. Finkelberg, Schroedinger equation for the system of one-dimensional particles with point interaction. Vestnik Moskovskogo Universiteta 1, 21 (1964)

    Google Scholar 

  119. J. B. McGuire, Interacting fermions in one dimension. I. repulsive potential. J. Math. Phys. 6, 432 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  120. M. Flicker, E.H. Lieb, Delta-function Fermi gas with Two-Spin deviates. Phys. Rev. 161, 179 (1967)

    Article  ADS  Google Scholar 

  121. M. Gaudin, Un système à une dimension de fermions en interaction. Phys. Lett. A 24, 55 (1967)

    Article  ADS  Google Scholar 

  122. C.N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. C.N. Yang, S-matrix for the one-dimensional N-Body problem with repulsive or attractive \(\delta \)-Function interaction. Phys. Rev. 168, 1920 (1968)

    Article  ADS  Google Scholar 

  124. B. Sutherland, Further results for the many-body problem in one dimension. Phys. Rev. Lett. 20, 98 (1968)

    Article  ADS  Google Scholar 

  125. H. Bergknoff, H.B. Thacker, Structure and solution of the massive Thirring model. Phys. Rev. D 19, 3666 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  126. S. Coleman, Quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D 11, 2088 (1975)

    Article  ADS  Google Scholar 

  127. N. Andrei, J.H. Lowenstein, Diagonalization of the Chiral-Invariant Gross-Neveu hamiltonian. Phys. Rev. Lett. 43, 1698 (1979)

    Article  ADS  Google Scholar 

  128. A.A. Belavin, Exact solution of the two-dimensional model with asymptotic freedom. Phys. Lett. B 87, 117–121 (1979)

    Article  ADS  Google Scholar 

  129. A. Bastianello, A. De Luca, G. Mussardo, Non-relativistic limit of integrable QFT and Lieb-Liniger models. J. Stat. Mech. 123104 (2016)

    Google Scholar 

  130. A. Bastianello, A. De Luca, G. Mussardo, Non relativistic limit of integrable QFT with fermionic excitations. J. Phys. A: Math. Theor. 50, 234002 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  131. E.H. Lieb, Residual entropy of square ice. Phys. Rev. 162, 162 (1967)

    Article  ADS  Google Scholar 

  132. C.P. Yang, Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external electric field. Phys. Rev. Lett. 19, 586 (1967)

    Article  ADS  Google Scholar 

  133. R.J. Baxter, Eight-vertex model in lattice statistics. Phys. Rev. Lett. 26, 832 (1971)

    Article  ADS  Google Scholar 

  134. M. Suzuki, Relationship between d-Dimensional quantal spin systems and (d+1)-Dimensional ising systems. Prog. Theor. Phys. 56, 5 (1976)

    MathSciNet  Google Scholar 

  135. V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, New York, 1993)

    Google Scholar 

  136. E.K. Sklyanin, Quantum version of the method of inverse scattering problem. J. Sov. Math. 19, 1546 (1982)

    Article  MATH  Google Scholar 

  137. A. Torrielli, Classical integrability. J. Phys. A 49, 323001 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  138. T. Dauxois, Physics of Solitons (Cambridge University Press, New York, 2006)

    Google Scholar 

  139. C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095 (1967)

    Article  ADS  MATH  Google Scholar 

  140. V.E. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Zh. Eksp. Teor. Fiz. 61, 118–134 (1971)

    Google Scholar 

  141. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Method for solving the Sine-Gordon equation. Phys. Rev. Lett. 30, 1262 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  142. F.Y. Wu, Knot theory and statistical mechanics. Rev. Mod. Phys. 64, 1099 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  143. V.G. Drinfeld, Quantum groups. J. Sov. Math. 41, 898 (1988)

    Article  Google Scholar 

  144. E. Witten, Integrable Lattice Models From Gauge Theory. arXiv:1611.00592v1 [hep-th] 2 Nov 2016

  145. J.-S. Caux, J. Mossel, Remarks on the notion of quantum integrability. J. Stat. Mech. P02023 (2011)

    Google Scholar 

  146. L. Tonks, The complete equation of state of one, two and three-dimensional gases of hard elastic spheres. Phys. Rev. 50, 955 (1936)

    Article  ADS  MATH  Google Scholar 

  147. J. Brand, A density-functional approach to fermionization in the 1D Bose gas. J. Phys. B: At. Mol. Opt. Phys. 37, S287–S300 (2004)

    Article  ADS  Google Scholar 

  148. G.C. Wick, The evaluation of the collision matrix. Phys. Rev. 80, 268 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  149. V.I. Yukalov, M.D. Girardeau, Fermi-Bose mapping for one-dimensional Bose gases. Laser Phys. Lett. 2(8), 375–382 (2005)

    Article  ADS  Google Scholar 

  150. A. Minguzzi, D.M. Gangardt, Exact coherent states of a harmonically confined Tonks-Girardeau gas. Phys. Rev. Lett. 94, 240404 (2005)

    Article  ADS  Google Scholar 

  151. M.D. Girardeau, Tonks-Girardeau and super-Tonks-Girardeau states of a trapped one-dimensional spinor Bose gas. Phys. Rev. A 83, 011601(R) (2011)

    Article  ADS  Google Scholar 

  152. M.D. Girardeau, A. Minguzzi, Soluble models of strongly interacting ultracold gas mixtures in tight waveguides. Phys. Rev. Lett. 99, 230402 (2007)

    Article  ADS  Google Scholar 

  153. T. Cheon, T. Shigehara, Fermion-Boson duality of one-dimensional quantum particles with generalized contact interaction. Phys. Rev. Lett. 82, 2536–2539 (1999)

    Article  ADS  Google Scholar 

  154. M.D. Girardeau, Anyon-Fermion mapping and applications to ultracold gases in tight waveguides. Phys. Rev. Lett. 97, 100402 (2006)

    Article  ADS  Google Scholar 

  155. I.E. Dzyaloshinskii, A.I. Larkin, Correlation functions for a one-dimensional Fermi system with long-range interaction (Tomonaga model). Zh. Eksp. Teor. Fiz. 65, 411 (1973)

    Google Scholar 

  156. R. Shankar, Renormalization-group approach to interacting fermions. Rev. Mod. Phys. 66, 129 (1994)

    Article  ADS  Google Scholar 

  157. A. Luther, I. Peschel, Single-particle states, Kohn anomaly, and pairing fluctuations in one dimension. Phys. Rev. B 9, 2911 (1974)

    Article  ADS  Google Scholar 

  158. S. Mandelstam, Soliton operators for the quantized sine-Gordon equation. Phys. Rev. D 11, 3026 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  159. A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge University Press, New York, 1998)

    Google Scholar 

  160. S.-I. Tomonaga, Remarks on Bloch’s Method of sound waves applied to many-fermion problems. Prog. Theor. Phys. 5, 544 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  161. D.C. Mattis, E.H. Lieb, Exact Solution of a Many-Fermion System and Its Associated Boson Field. J. Math. Phys. 6(2), 304–312 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  162. J.M. Luttinger, An exactly soluble model of Many-Fermion system. J. Math. Phys. 4, 1154 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  163. F.D.M. Haldane, Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C: Solid State Phys. 14, 2585 (1981)

    Article  ADS  Google Scholar 

  164. A. Schwartz, M. Dressel, G. Grüner, V. Vescoli, L. Degiorgi, T. Giamarchi, On-chain electrodynamics of metallic \((TMTSF)_2X\) salts: observation of Tomonaga-Luttinger liquid response. Phys. Rev. B 58, 1261 (1998)

    Article  ADS  Google Scholar 

  165. M. Klanjšek, H. Mayaffre, C. Berthier, M. Horvatić, B. Chiari, O. Piovesana, P. Bouillot, C. Kollath, E. Orignac, R. Citro, T. Giamarchi, Controlling Luttinger liquid physics in spin ladders under a magnetic field. Phys. Rev. Lett. 101, 137207 (2008)

    Article  ADS  Google Scholar 

  166. P. Bouillot, C. Kollath, A.M. Läuchli, M. Zvonarev, B. Thielemann, C. Rüegg, E. Orignac, R. Citro, M. Klanjšek, C. Berthier, M. Horvatić, T. Giamarchi, Statics and dynamics of weakly coupled antiferromagnetic spin-\(1/2\) ladders in a magnetic field. Phys. Rev. B 83, 054407 (2011)

    Article  ADS  Google Scholar 

  167. M. Jeong, D. Schmidiger, H. Mayaffre, M. Klanjšek, C. Berthier, W. Knafo, G. Ballon, B. Vignolle, S. Krämer, A. Zheludev, M. Horvatić, Dichotomy between attractive and repulsive tomonaga-luttinger liquids in spin ladders. Phys. Rev. Lett. 117, 106402 (2016)

    Article  ADS  Google Scholar 

  168. X.G. Wen, Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B 41, 12838 (1990)

    Article  ADS  Google Scholar 

  169. F.P. Milliken, C.P. Umbach, R.A. Webb, Indications of a Luttinger liquid in the fractional quantum Hall regime. Solid State Commun. 97, 309–313 (1996)

    Article  ADS  Google Scholar 

  170. M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen, Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999)

    Article  ADS  Google Scholar 

  171. B. Gao, A. Komnik, R. Egger, D.C. Glattli, A. Bachtold, Evidence for Luttinger-liquid behavior in crossed metallic single-wall nanotubes. Phys. Rev. Lett. 92, 216804 (2004)

    Article  ADS  Google Scholar 

  172. E. Levy, I. Sternfeld, M. Eshkol, M. Karpovski, B. Dwir, A. Rudra, E. Kapon, Y. Oreg, A. Palevski, Experimental evidence for Luttinger liquid behavior in sufficiently long GaAs V-groove quantum wires. Phys. Rev. B 85, 045315 (2012)

    Article  ADS  Google Scholar 

  173. B. Dardel, D. Malterre, M. Grioni, P. Weibel, Y. Baer, J. Voit, D. Jérôme, Possible observation of a luttinger-liquid behaviour from photoemission spectroscopy of one-dimensional organic conductors. Europhys. Lett. 24(8), 687–692 (1993)

    Article  ADS  Google Scholar 

  174. A. Lebed, The Physics of Organic Superconductors and Conductors (Springer, Heidelberg, 2008)

    Book  Google Scholar 

  175. B. Lake, D.A. Tennant, C.D. Frost, S.E. Nagler, Quantum criticality and universal scaling of a quantum antiferromagnet. Nat. Mater. 4, 329–334 (2005)

    Article  ADS  Google Scholar 

  176. M.A. Cazalilla, Bosonizing one-dimensional cold atomic gases. J. Phys. B: At. Mol. Opt. Phys. 37, 7S1 (2004)

    Article  ADS  Google Scholar 

  177. K.D. Schotte, U. Schotte, Tomonaga’s Model and the Threshold Singularity of X-Ray spectra of metals. Phys. Rev. 182, 479 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  178. K.B. Efetov, A.I. Larkin, Correlation functions in one-dimensional systems with a strong interaction. Sov. Phys. JETP 42, 390 (1976)

    ADS  Google Scholar 

  179. F.D.M. Haldane, Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840 (1981)

    Article  ADS  Google Scholar 

  180. A. Shashi, L.I. Glazman, J.-S. Caux, A. Imambekov, Nonuniversal prefactors in the correlation functions of one-dimensional quantum liquids. Phys. Rev. B 84, 045408 (2011)

    Article  ADS  Google Scholar 

  181. A. Shashi, M. Panfil, J.-S. Caux, A. Imambekov, Exact prefactors in static and dynamic correlation functions of one-dimensional quantum integrable models: applications to the Calogero-Sutherland, Lieb-Liniger, and XXZ models. Phys. Rev. B 85, 155136 (2012)

    Article  ADS  Google Scholar 

  182. J. Sólyom, The Fermi gas model of one-dimensional conductors. Adv. Phys. 28, 201–303 (1979)

    Article  ADS  Google Scholar 

  183. F. Bovo, Nonlinear Bosonization and Refermionization in One Dimension with the Keldysh Functional Integral. 25 Oct 2016. arXiv:1610.08110v1

  184. A.R. Its, A.G. Izergin, V.E. Korepin, N.A. Slavnov, Differential equations for quantum correlation functions. Int. J. Mod. Phys. B 04, 1003 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  185. D.N. Aristov, Luttinger liquids with curvature: Density correlations and Coulomb drag effect. Phys. Rev. B 76, 085327 (2007)

    Article  ADS  Google Scholar 

  186. R.G. Pereira, Long time correlations of nonlinear Luttinger liquids. Int. J. Mod. Phys. B 26, 1244008 (2012)

    Article  ADS  MATH  Google Scholar 

  187. K.K. Kozlowski, V. Terras, Long-time and large-distance asymptotic behavior of the current-current correlators in the non-linear Schrödinger model. J. Stat. Mech. P09013 (2011)

    Google Scholar 

  188. A.J. Schofield, Non-Fermi liquids. Contemp. Phys. 40(2), 95–115 (1999)

    Article  ADS  Google Scholar 

  189. A. Imambekov, T.L. Schmidt, L.I. Glazman, One-dimensional quantum liquids: beyond the luttinger liquid paradigm. Rev. Mod. Phys. 84, 1253 (2012)

    Article  ADS  Google Scholar 

  190. E. Witten, Non-Abelian Bosonization in two dimensions. Commun. Math. Phys. 92, 455–472 (1984)

    Article  ADS  MATH  Google Scholar 

  191. X.G. Wen, Metallic non-Fermi-liquid fixed point in two and higher dimensions. Phys. Rev. B 42, 6623 (1990)

    Article  ADS  Google Scholar 

  192. L. Bartosch, P. Kopietz, Correlation functions of higher-dimensional Luttinger liquids. Phys. Rev. B 59, 5377 (1999)

    Article  ADS  Google Scholar 

  193. P. Francesco, P. Mathieu, D. Sénéchal, Conformal Field theory (Springer, Graduate Textbooks in Contemporary Physics, 1997)

    Google Scholar 

  194. A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  195. V.S. Dotsenko, V.A. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models. Nucl. Phys. B 240, 312 (1984)

    Article  ADS  Google Scholar 

  196. A.M. Polyakov, Conformal symmetry of critical fluctuations. JETP Lett. 12, 381 (1970)

    ADS  Google Scholar 

  197. J.L. Cardy, Conformal invariance and universality in finite-size scaling. J. Phys. A 17, 385–961 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  198. H.W.J. Blöte, J.L. Cardy, M.P. Nightingale, Conformal invariance, the central charge, and universal finite-size amplitudes at criticality. Phys. Rev. Lett. 56, 742 (1986)

    Article  ADS  Google Scholar 

  199. D. Friedan, Z. Qiu, S. Shenker, Conformal invariance, unitarity, and critical exponents in two dimensions. Phys. Rev. Lett. 52, 1575 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  200. T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, New York, 2004)

    Google Scholar 

  201. G. Lang, F. Hekking, A. Minguzzi, Dynamic structure factor and drag force in a one-dimensional Bose gas at finite temperature. Phys. Rev. A 91, 063619 (2015)

    Article  ADS  Google Scholar 

  202. A. Del Maestro, M. Boninsegni, I. Affleck, \({^4}\)He Luttinger liquid in nanopores. Phys. Rev. Lett. 106, 105303 (2011)

    Article  ADS  Google Scholar 

  203. S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, A. Vichi, Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents. J. Stat. Phys. 157, 869–914 (2014)

    Google Scholar 

  204. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  205. E. Witten, Anti De sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  206. J. Zaanen, Y. Liu, Y.-S. Sun, K. Schalm, Holographic Duality in Condensed Matter Physics (Cambridge, 2005)

    Google Scholar 

  207. A. Vogler, R. Labouvie, G. Barontini, S. Eggert, V. Guarrera, H. Ott, Dimensional phase transition from an array of 1D Luttinger liquids to a 3D Bose-Einstein condensate. Phys. Rev. Lett. 113, 215301 (2014)

    Article  ADS  Google Scholar 

  208. B. Irsigler, A. Pelster, Dimensionally induced one-dimensional to three-dimensional phase transition of the weakly interacting ultracold Bose gas. Phys. Rev. A 95, 043610 (2017)

    Article  ADS  Google Scholar 

  209. C. Castellani, C. Di Castro, W. Metzner, Dimensional crossover from Fermi to Luttinger liquid. Phys. Rev. Lett. 72, 316 (1994)

    Article  ADS  Google Scholar 

  210. S. Bellucci, J. González, Crossover from marginal Fermi liquid to Luttinger liquid behavior in carbon nanotubes. Phys. Rev. B 64, 201106(R) (2001)

    Article  ADS  Google Scholar 

  211. D.I. Tsomokos, S. Ashhab, F. Nori, Using superconducting qubit circuits to engineer exotic lattice systems. Phys. Rev. A 82, 052311 (2010)

    Article  ADS  Google Scholar 

  212. M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Realization of the Hofstadter hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013)

    Article  ADS  Google Scholar 

  213. F. Guinea, G. Zimanyi, Luttinger liquids in higher dimensions. Phys. Rev. B 47, 501 (1993)

    Article  ADS  Google Scholar 

  214. E. Arrigoni, Crossover from Luttinger- to Fermi-Liquid behavior in strongly anisotropic systems in large dimensions. Phys. Rev. Lett. 83, 128 (1999)

    Article  ADS  Google Scholar 

  215. S. Biermann, A. Georges, A. Lichtenstein, T. Giamarchi, Deconfinement transition and Luttinger to Fermi liquid crossover in quasi-one-dimensional systems. Phys. Rev. Lett. 87, 276405 (2001)

    Article  ADS  Google Scholar 

  216. J. Armijo, T. Jacqmin, K. Kheruntsyan, I. Bouchoule, Mapping out the quasicondensate transition through the dimensional crossover from one to three dimensions. Phys. Rev. A 83, 021605(R) (2011)

    Article  ADS  Google Scholar 

  217. M.C. Revelle, J.A. Fry, B.A. Olsen, R.G. Hulet, 1D to 3D crossover of a spin-imbalanced fermi gas. Phys. Rev. Lett. 117, 235301 (2016)

    Article  ADS  Google Scholar 

  218. O. Boada, A. Celi, J.I. Latorre, M. Lewenstein, Quantum simulation of an extra dimension. Phys. Rev. Lett. 108, 133001 (2012)

    Article  ADS  Google Scholar 

  219. A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I.B. Spielman, G. Juzeliunas, M. Lewenstein, Synthetic Gauge Fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014)

    Article  ADS  Google Scholar 

  220. T.-S. Zeng, C. Wang, H. Zhai, Charge pumping of interacting fermion atoms in the synthetic dimension. Phys. Rev. Lett. 115, 095302 (2015)

    Article  ADS  Google Scholar 

  221. X.-W. Luo, X. Zhou, C.-F. Li, J.-S. Xu, G.-C. Guo, Z.-W. Zhou, Quantum simulation of 2D topological physics in a 1D array of optical cavities. Nat. Commun. 6, 7704 (2015)

    Article  Google Scholar 

  222. S. Barbarino, L. Taddia, D. Rossini, L. Mazza, R. Fazio, Synthetic gauge fields in synthetic dimensions: interactions and chiral edge modes. New J. Phys. 18, 035010 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  223. H.M. Price, T. Ozawa, N. Goldman, Synthetic dimensions for cold atoms from shaking a harmonic trap. Phys. Rev. A 95, 023607 (2017)

    Article  ADS  Google Scholar 

  224. C. Cheng, J. Kangara, I. Arakelyan, J.E. Thomas, Fermi gases in the two-dimensional to quasi-two-dimensional crossover. Phys. Rev. A 94, 031606(R) (2016)

    Article  ADS  Google Scholar 

  225. G. Lang, F. Hekking, A. Minguzzi, Dimensional crossover in a Fermi gas and a cross-dimensional Tomonaga-Luttinger model. Phys. Rev. A 93, 013603 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Lang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lang, G. (2018). From 3D to 1D and Back to 2D. In: Correlations in Low-Dimensional Quantum Gases. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-05285-0_2

Download citation

Publish with us

Policies and ethics