Skip to main content

Structure-Based Drug Design of PfDHODH Inhibitors as Antimalarial Agents

  • Chapter
  • First Online:
Structural Bioinformatics: Applications in Preclinical Drug Discovery Process

Abstract

Structure-based drug design (SBDD) is being efficiently used for the design of antimalarial agents. It is a very effective tool for challenges like drug selectivity and resistance. Over the past decade, a considerable number of druggable targets have been explored—these include Na+ ATPase 4 ion channel, cytochrome bc1, mitochondrial electron transport chain, phosphatidylinositol 4-kinase (PfPI4 K), dihydroorotate dehydrogenase , hemozoin formation, dihydrofolate reductase inhibitors, etc. Among these, Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) is a new and very promising target. PfDHODH has shown considerable potential in arresting growth of the parasite at blood stage by inhibiting pyrimidine biosynthesis . This chapter provides a review of all the SBDD efforts for the development of inhibitors against PfDHODH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACT:

Aspartate carbamoyltransferase

ADME:

Absorption, distribution, metabolism, and excretion

CoMFA:

Comparative molecular field analysis

CoMSIA:

Comparative molecular similarity index analysis

CoQ:

Coenzyme Q (Ubiquinone)

CTP:

Cytidine triphosphate

DBP:

Docking-based pharmacophore

DHOtase:

Dihydroorotase

DHO:

Dihydroorotate

DHODH:

Dihydroorotate dehydrogenase

dTMP:

Deoxyribose thymidine monophosphate

E. coli.:

Escherichia coli

FAD:

Flavin adenine dinucleotide

FMN:

Flavin mononucleotide

G/PLS:

Genetic partial least squares

GAT/CPS:

Glutamine amidotransferase/carbamoyl phosphate synthetase

m-:

meta-

MM/GBSA:

Molecular mechanics/Generalized Born surface area

MSA:

Molecular shape analysis

MLR:

Multilinear regression

NAD:

Nicotinamide adenine dinucleotide

OMPDC:

Orotidine 5′-monophosphate decarboxylase

OPRT:

Orotate phosphoribosyltransferase

ORO:

Orotate

o-:

ortho-

p-:

para-

Pb :

Plasmodium berghei

PDB:

Protein Data Bank

Pf :

Plasmodium falciparum

PRPP:

Phosphoribosylpyrophosphate

QSAR:

Quantitative structure–activity relationship

RMS:

Root mean square

RNA:

Ribonucleic Acid

SBDD:

Structure-based drug design

SVM:

Support vector machine

UMP:

Uridine monophosphate

UTP:

Uridine triphosphate

References

  1. World Malaria Report (2017) World Health Organization, Geneva. doi: ISBN 978-92-4-156552-3

    Google Scholar 

  2. [a] Gregson A, Plowe CV (2005) Mechanisms of resistance of malaria parasites to antifolates. Pharmacol Rev 57:117–145; [b] Harinasuta T, Suntharasamai P, Viravan C (1965) Chloroquine-resistant falciparum malaria in Thailand. The Lancet 2:657–660; [c] Sirawaraporn W, Prapunwattana P et al. (1993) The dihydrofolate reductase domain of Plasmodium falciparum thymidylate synthase-dihydrofolate reductase. Gene synthesis, expression, and anti-folate-resistant mutants. J Biol Chem 268:21637–21644

    Google Scholar 

  3. Wells TNC, van Huijsduijnen RH, Van Voorhis WC (2015) Malaria medicines: a glass half full? Nat Rev Drug Discov 14:424–442

    Article  CAS  PubMed  Google Scholar 

  4. Tinto H, D’Alessandro U et al (2015) Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. The Lancet 386:31–45

    Article  CAS  Google Scholar 

  5. Anderson AC (2003) The process of structure-based drug design. Chem Biol 10:787–797

    Article  CAS  PubMed  Google Scholar 

  6. [a] Cowman AF, Morry MJ et al. (1988) Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proc Natl Acad Sci USA 85:9109–9113; [b] Foote SJ, Galatis D, Cowman AF (1990) Amino acids in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum Involved in cycloguanil resistance differ from those involved in pyrimethamine resistance. Proc Natl Acad Sci USA 87:3014–3017; [c] Peterson DS, Milhous WK, Wellems TE (1990) Molecular basis of differential resistance to cycloguanil and pyrimethamine in Plasmodium falciparum Malaria. Proc Natl Acad Sci USA 87:3018–3022; [d] Peterson DS, Walliker D, Wellems TE (1988) Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc Natl Acad Sci USA 85:9114–9118; [e] Plowe CV (2009) The evolution of drug-resistant malaria. Trans R Soc Trop Med Hyg 103:S11–S14

    Google Scholar 

  7. Reickmann KH (1973) Chemotherapy of malaria and resistance to antimalarials. World Health Organization technical report, vol 529. World Health Organisation, Geneva

    Google Scholar 

  8. Yuthavong Y, Tarnchompoo B et al (2012) Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proc Natl Acad Sci U S A 109:16823–16828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. [a] Adane L, Bharatam PV, Sharma V (2010) A common feature-based 3D-pharmacophore model generation and virtual screening: identification of potential PfDHFR inhibitors. J Enzyme Inhib Med Chem 25:635–645; [b] Adane L, Patel DS, Bharatam PV (2010) Shape- and chemical feature-based 3D-pharmacophore model generation and virtual screening: identification of potential leads for P. falciparum DHFR enzyme inhibition. Chem Biol Drug Des 75:115–126

    Google Scholar 

  10. Mehdi A, Adane L, Patel DS, Bharatam PV (2010) Electronic structure and reactivity of guanylthiourea: a quantum chemical study. J Comput Chem 31:1259–1267

    CAS  PubMed  Google Scholar 

  11. Abbat S, Jain V, Bharatam PV (2015) Origins of the specificity of inhibitor P218 toward wild-type and mutant PfDHFR: a molecular dynamics analysis. J Biomol Struct Dyn 33:1913–1928

    Article  CAS  PubMed  Google Scholar 

  12. [a] Adane L, Bhagat S et al. (2014) Design and synthesis of guanylthiourea derivatives as potential inhibitors of Plasmodium falciparum dihydrofolate reductase enzyme. Bioorg Med Chem Lett 24:613–617; [b] Bhagat S, Arfeen M et al. (2017) Guanylthiourea derivatives as potential antimalarial agents: synthesis, in vivo and molecular modelling studies. Eur J Med Chem 135:339–348

    Google Scholar 

  13. [a] Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Bio 11:515; [b] Wang T, Bisson WH et al. (2014) Differences in conformational dynamics between Plasmodium falciparum and human Hsp90 orthologues enable the structure-based discovery of pathogen-selective inhibitors. J Med Chem 57:2524–2535

    Google Scholar 

  14. Corbett KD, Berger JM (2010) Structure of the ATP-binding domain of Plasmodium falciparum Hsp90. Proteins 78:2738–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shahinas D, Liang M, Datti A, Pillai DR (2010) A repurposing strategy identifies novel synergistic inhibitors of Plasmodium falciparum heat shock protein 90. J Med Chem 53:3552–3557

    Article  CAS  PubMed  Google Scholar 

  16. Kumar R, Musiyenko A, Barik S (2003) The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin. Malar J 2:30

    Article  PubMed  PubMed Central  Google Scholar 

  17. Posfai D, Eubanks AL et al. (2018) Identification of Hsp90 inhibitors with anti-plasmodium activity. Antimicrob Agents Chemother 62:e01799–01717

    Google Scholar 

  18. Krüger T, Sanchez CP, Lanzer M (2010) Complementation of Saccharomyces cerevisiae pik1ts by a phosphatidylinositol 4-kinase from Plasmodium falciparum. Mol Biochem Parasitol 172:149–151

    Article  PubMed  CAS  Google Scholar 

  19. Rajkhowa S, Borah SM, Jha AN, Deka RC (2017) Design of Plasmodium falciparum PI(4)KIIIβ inhibitor using molecular dynamics and molecular docking methods. ChemistrySelect 2:1783–1792

    Article  CAS  Google Scholar 

  20. McNamara CW, Lee MC et al (2013) Targeting Plasmodium PI(4)K to eliminate malaria. Nature 504:248–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Achieng AO, Rawat M et al (2017) Antimalarials: molecular drug targets and mechanism of action. Curr Top Med Chem 17:2114–2128

    Article  CAS  PubMed  Google Scholar 

  22. Melo AM, Bandeiras TM, Teixeira M (2004) New insights into type II NAD (P) H: quinone oxidoreductases. Microbiol Mol Biol Rev 68:603–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Biagini GA, Viriyavejakul P et al (2006) Functional characterization and target validation of alternative complex I of Plasmodium falciparum mitochondria. Antimicrob Agents Chemother 50:1841–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pidathala C, Amewu R et al (2012) Identification, design and biological evaluation of bisaryl quinolones targeting Plasmodium falciparum type II NADH: quinone oxidoreductase (PfNDH2). J Med Chem 55:1831–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang Y, Yu Y et al (2017) Target elucidation by cocrystal structures of NADH-ubiquinone oxidoreductase of Plasmodium falciparum (PfNDH2) with small molecule to eliminate drug-resistant malaria. J Med Chem 60:1994–2005

    Article  CAS  PubMed  Google Scholar 

  26. Rodrigues T, Lopes F, Moreira R (2010) Inhibitors of the mitochondrial electron transport chain and de novo pyrimidine biosynthesis as antimalarials: the present status. Curr Med Chem 17:929–956

    Article  CAS  PubMed  Google Scholar 

  27. Alnabulsi S, Santina E et al (2016) Non-symmetrical furan-amidines as novel leads for the treatment of cancer and malaria. Eur J Med Chem 111:33–45

    Article  CAS  PubMed  Google Scholar 

  28. Banerjee AK, Arora N, Murty USN (2012) Aspartate carbamoyltransferase of Plasmodium falciparum as a potential drug target for designing anti-malarial chemotherapeutic agents. Med Chem Res 21:2480–2493

    Article  CAS  Google Scholar 

  29. [a] Lunev S, Bosch SS et al. (2016) Crystal structure of truncated aspartate transcarbamoylase from Plasmodium falciparum. Acta Crystallogr F 72:523–533; [b] Lunev S, Bosch SS et al. (2018) Identification of a non-competitive Inhibitor of Plasmodium falciparum aspartate transcarbamoylase. Biochem Biophys Res Commun 497:835–842

    Google Scholar 

  30. Fritz-Wolf K, Jortzik E et al (2013) Crystal structure of the Plasmodium falciparum thioredoxin reductase-thioredoxin complex. J Mol Biol 425:3446–3460

    Article  CAS  PubMed  Google Scholar 

  31. McMillan PJ, Arscott LD et al (2006) Identification of acid-base catalytic residues of high-Mr thioredoxin reductase from Plasmodium falciparum. J Biol Chem 281:32967–32977

    Article  CAS  PubMed  Google Scholar 

  32. Boumis G, Giardina G et al (2012) Crystal structure of Plasmodium falciparum thioredoxin reductase, a validated drug target. Biochem Biophys Res Commun 425:806–811

    Article  CAS  PubMed  Google Scholar 

  33. McCarty SE, Schellenberger A et al (2015) Plasmodium falciparum thioredoxin reductase (PfTrxR) and its role as a target for new antimalarial discovery. Molecules 20:11459–11473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Munigunti R, Gathiaka S et al (2013) Characterization of PfTrxR inhibitors using antimalarial assays and in silico techniques. Chem Cent J 7:175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Munigunti R, Gathiaka S et al (2014) Determination of antiplasmodial activity and binding affinity of curcumin and demethoxycurcumin towards PfTrxR. Nat Prod Res 28:359–364

    Article  CAS  PubMed  Google Scholar 

  36. Winkler M, Maynadier M et al (2015) Uncovering new structural insights for antimalarial activity from cost-effective aculeatin-like derivatives. Org Biomol Chem 13:2064–2077

    Article  CAS  PubMed  Google Scholar 

  37. Chaal BK, Gupta AP et al (2010) Histone deacetylases play a major role in the transcriptional regulation of the Plasmodium falciparum life cycle. PLoS Path 6:e1000737

    Article  CAS  Google Scholar 

  38. [a] Gupta AP, Bozdech Z (2017) Epigenetic landscapes underlining global patterns of gene expression in the human malaria parasite, Plasmodium falciparum. Int J Parasitol 47:399–407; [b] Sumanadasa SDM, Goodman CD et al. (2012) Antimalarial activity of the anticancer histone deacetylase inhibitor SB939. Antimicrob Agents Chemother 56:3849–3856

    Google Scholar 

  39. Mukherjee P, Pradhan A et al (2008) Structural insights into the Plasmodium falciparum histone deacetylase 1 (PfHDAC-1): a novel target for the development of antimalarial therapy. Bioorg Med Chem 16:5254–5265

    Article  CAS  PubMed  Google Scholar 

  40. Hansen FK, Sumanadasa SDM et al. Discovery of HDAC inhibitors with potent activity against multiple malaria parasite life cycle stages. Eur J Med Chem 82:204–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Darkin-Rattray SJ, Gurnett AM et al (1996) Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci USA 93:13143–13147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Harwaldt P, Rahlfs S, Becker K (2002) Glutathione S-transferase of the malarial parasite Plasmodium falciparum: characterization of a potential drug target. Biol Chem 383:821–830

    Article  CAS  PubMed  Google Scholar 

  43. Hiller N, Fritz-Wolf K et al (2006) Plasmodium falciparum glutathione S-transferase—structural and mechanistic studies on ligand binding and enzyme inhibition. Protein Sci 15:281–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fritz-Wolf K, Becker A et al (2003) X-ray structure of glutathione S-transferase from the malarial parasite Plasmodium falciparum. Proc Natl Acad Sci USA 100:13821–13826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Perbandt M, Eberle R et al (2015) High resolution structures of Plasmodium falciparum GST complexes provide novel insights into the dimer-tetramer transition and a novel ligand-binding site. J Struct Biol 191:365–375

    Article  CAS  PubMed  Google Scholar 

  46. Ahmad R, Srivastava AK (2008) Inhibition of glutathione-S-transferase from Plasmodium yoelii by protoporphyrin IX, cibacron blue and menadione: implications and therapeutic benefits. Parasitol Res 102:805–807

    Article  PubMed  Google Scholar 

  47. Miller RW, Kerr CT, Curry JR (1968) Mammalian dihydroorotate—ubiquinone reductase complex. Can J Biochem 46:1099–1106

    Article  CAS  PubMed  Google Scholar 

  48. Chen JJ, Jones ME (1976) The cellular location of dihydroorotate dehydrogenase: relation to de novo biosynthesis of pyrimidines. Arch Biochem Biophys 176:82–90

    Article  CAS  PubMed  Google Scholar 

  49. [a] Larsen JN, Jensen KF (1985) Nucleotide sequence of the pyrD gene of Escherichia coli and characterization of the flavoprotein dihydroorotate dehydrogenase. Eur J Biochem 151:59–65; [b] LeBlanc SB, Wilson CM (1993) The dihydroorotate dehydrogenase gene homologue of Plasmodium falciparum. Mol Biochem Parasitol 60:349–351

    Article  CAS  PubMed  Google Scholar 

  50. [a] Gardner MJ, Hall N et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511; [b] K. Vyas V, Ghate M (2011) Recent developments in the medicinal chemistry and therapeutic potential of dihydroorotate dehydrogenase (DHODH) inhibitors. Mini-Rev Med Chem 11:1039–1055

    Google Scholar 

  51. Krungkrai J (1995) Purification, characterization and localization of mitochondrial dihydroorotate dehydrogenase in Plasmodium falciparum, human malaria parasite. Biochim Biophys Acta Gen Subj 1243:351–360

    Article  Google Scholar 

  52. McRobert L, McConkey GA (2002) RNA Interference (RNAi) inhibits growth of Plasmodium falciparum. Mol Biochem Parasitol 119:273–278

    Article  CAS  PubMed  Google Scholar 

  53. Baldwin J, Farajallah AM et al (2002) Malarial dihydroorotate dehydrogenase: substrate and inhibitor specificity. J Biol Chem 277:41827–41834

    Article  CAS  PubMed  Google Scholar 

  54. Boa AN, Canavan SP et al (2005) Synthesis of brequinar analogue inhibitors of malaria parasite dihydroorotate dehydrogenase. Bioorg Med Chem 13:1945–1967

    Article  CAS  PubMed  Google Scholar 

  55. Baldwin J, Michnoff CH et al (2005) High-throughput screening for potent and selective inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. J Biol Chem 280:21847–21853

    Article  CAS  PubMed  Google Scholar 

  56. Heikkilä T, Thirumalairajan S et al (2006) The first de novo designed inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. Bioorg Med Chem Lett 16:88–92

    Article  PubMed  CAS  Google Scholar 

  57. Phillips MA, Rathod PK (2010) Plasmodium dihydroorotate dehydrogenase: A promising target for novel anti-malarial chemotherapy. Infect Disord Drug Targets 10:226–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Löffler M, Fairbanks LD et al (2005) Pyrimidine pathways in health and disease. Trends Mol Med 11:430–437

    Article  PubMed  CAS  Google Scholar 

  59. Fagan RL, Nelson MN, Pagano PM, Palfey BA (2006) Mechanism of flavin reduction in class 2 dihydroorotate dehydrogenases. Biochemistry 45:14926–14932

    Article  CAS  PubMed  Google Scholar 

  60. Liu S, Neidhardt EA et al (2000) Structures of human dihydroorotate dehydrogenase in complex with antiproliferative agents. Structure 8:25–33

    Article  CAS  PubMed  Google Scholar 

  61. Fagan RL, Palfey BA (2009) Roles in binding and chemistry for conserved active site residues in the class 2 dihydroorotate dehydrogenase from Escherichia coli. Biochemistry 48:7169–7178

    Article  CAS  PubMed  Google Scholar 

  62. Hurt DE, Widom J, Clardy J (2006) Structure of Plasmodium falciparum dihydroorotate dehydrogenase with a bound inhibitor. Acta Crystallogr Sect D: Biol Crystallogr D62:312–323

    Article  CAS  Google Scholar 

  63. Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43:W389–W394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Deng X, Gujjar R et al (2009) Structural plasticity of malaria dihydroorotate dehydrogenase allows selective binding of diverse chemical scaffolds. J Biol Chem 284:26999–27009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Booker ML, Bastos CM et al (2010) Novel inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with anti-malarial activity in the mouse model. J Biol Chem 285:33054–33064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Coteron JM, Marco M et al (2011) Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. J Med Chem 54:5540–5561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ross LS, Gamo FJ et al (2014) In vitro resistance selections for Plasmodium falciparum dihydroorotate dehydrogenase inhibitors give mutants with multiple point mutations in the drug-binding site and altered growth. J Biol Chem 289:17980–17995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Deng X, Kokkonda S et al (2014) Fluorine modulates species selectivity in the triazolopyrimidine class of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors. J Med Chem 57:5381–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Phillips MA, Lotharius J et al (2015) A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci Transl Med 7:296ra111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Deng X, Matthews D, Rathod PK, Phillips MA (2015) The X-ray structure of Plasmodium falciparum dihydroorotate dehydrogenase bound to a potent and selective N-phenylbenzamide inhibitor reveals novel binding-site interactions. Acta Crystallogr Sec F 71:553–559

    Article  CAS  Google Scholar 

  71. Kokkonda S, Deng X et al (2016) Tetrahydro-2-naphthyl and 2-indanyl triazolopyrimidines targeting Plasmodium falciparum dihydroorotate dehydrogenase display potent and selective antimalarial activity. J Med Chem 59:5416–5431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Phillips MA, White KL et al (2016) A triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with improved drug-like properties for treatment and prevention of malaria. ACS Infect Dis 2:945–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Malmquist NA, Gujjar R, Rathod PK, Phillips MA (2008) Analysis of flavin oxidation and electron-transfer inhibition in Plasmodium falciparum dihydroorotate dehydrogenase. Biochemistry 47:2466–2475

    Article  CAS  PubMed  Google Scholar 

  74. [a] Norager S, Jensen KF, Björnberg O, Larsen S (2002) E. coli Dihydroorotate dehydrogenase reveals structural and functional distinctions between different classes of dihydroorotate dehydrogenases. structure 10:1211–1223; [b] Rowland P, Bjornberg O et al. (1998) The crystal structure of Lactococcus lactis dihydroorotate dehydrogenase A complexed with the enzyme reaction product throws light on its enzymatic function. Protein Sci 7:1269–1279; [c] Rowland P, Nielsen FS, Jensen KF, Larsen S (1997) The crystal structure of the flavin containing enzyme dihydroorotate dehydrogenase A from Lactococcus lactis. Structure 5:239–252; [d] Sørensen PG, Dandanell G (2002) A new type of dihydroorotate dehydrogenase, type 1S, from the thermoacidophilic archaeon Sulfolobus solfataricus. Extremophiles 6:245–251

    Google Scholar 

  75. Bedingfield PT, Cowen D et al (2012) Factors influencing the specificity of inhibitor binding to the human and malaria parasite dihydroorotate dehydrogenases. J Med Chem 55:5841–5850

    Article  CAS  PubMed  Google Scholar 

  76. Copeland RA, Davis JP et al (1995) Recombinant human dihydroorotate dehydrogenase: expression, purification, and characterization of a catalytically functional truncated enzyme. Arch Biochem Biophys 323:79–86

    Article  CAS  PubMed  Google Scholar 

  77. [a] Löffler M, Knecht W et al. (2002) Drosophila melanogaster dihydroorotate dehydrogenase: the N-terminus is important for biological function in vivo but not for catalytic properties in vitro. Insect Biochem Mol Biol 32:1159–1169; [b] Rawls J, Knecht W et al. (2000) Requirements for the mitochondrial import and localization of dihydroorotate dehydrogenase. Eur J Biochem 267:2079–2087

    Google Scholar 

  78. Phillips MA, Gujjar R et al (2008) Triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors with potent and selective activity against the malaria parasite Plasmodium falciparum. J Med Chem 51:3649–3653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Heikkilä T, Ramsey C et al (2007) Design and synthesis of potent inhibitors of the malaria parasite dihydroorotate dehydrogenase. J Med Chem 50:186–191

    Article  PubMed  CAS  Google Scholar 

  80. [a] Patel V, Booker M et al. (2008) Identification and characterization of small molecule inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. J Biol Chem 283:35078–35085; [b] Skerlj RT, Bastos CM et al. (2011) Optimization of potent inhibitors of P. falciparum dihydroorotate dehydrogenase for the treatment of malaria. ACS Med Chem Lett 2:708–713

    Google Scholar 

  81. Fritzson I, Bedingfield PTP et al (2011) N-substituted salicylamides as selective malaria parasite dihydroorotate dehydrogenase inhibitors. Med Chem Comm 2:895–898

    Article  CAS  Google Scholar 

  82. Zhu J, Han L et al (2015) Design, synthesis, X-ray crystallographic analysis, and biological evaluation of thiazole derivatives as potent and selective inhibitors of human dihydroorotate dehydrogenase. J Med Chem 58:1123–1139

    Article  CAS  PubMed  Google Scholar 

  83. Azeredo LFSP, Coutinho JP et al (2017) Evaluation of 7-arylaminopyrazolo [1,5-a] pyrimidines as anti-Plasmodium falciparum, antimalarial, and Pf dihydroorotate dehydrogenase inhibitors. Eur J Med Chem 126:72–83

    Article  CAS  PubMed  Google Scholar 

  84. Xu M, Zhu J et al (2013) Novel selective and potent inhibitors of malaria parasite dihydroorotate dehydrogenase: discovery and optimization of dihydrothiophenone derivatives. J Med Chem 56:7911–7924

    Article  CAS  PubMed  Google Scholar 

  85. Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4:649

    Article  CAS  PubMed  Google Scholar 

  86. Gillet VJ, Newell W et al (1994) SPROUT: recent developments in the de novo design of molecules. J Chem Inf Comput Sci 34:207–217

    Article  CAS  PubMed  Google Scholar 

  87. Gujjar R, Marwaha A et al (2009) Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. J Med Chem 52:1864–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gujjar R, El Mazouni F et al (2011) Lead optimization of aryl and aralkyl amine-based triazolopyrimidine inhibitors of Plasmodium Falciparum dihydroorotate dehydrogenase with antimalarial activity in mice. J Med Chem 54:3935–3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ojha PK, Roy K (2010) Chemometric modeling, docking and in silico design of triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors as antimalarials. Eur J Med Chem 45:4645–4656

    Article  CAS  PubMed  Google Scholar 

  90. Shah P, Kumar S, Tiwari S, Siddiqi MI (2012) 3D-QSAR studies of triazolopyrimidine derivatives of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors using a combination of molecular dynamics, docking, and genetic algorithm-based methods. J Chem Biol 5:91–103

    Article  PubMed  PubMed Central  Google Scholar 

  91. Desai KR, Shaikh MS, Coutinho EC (2011) Molecular modeling studies, synthesis and biological evaluation of derivatives of N-phenylbenzamide as Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. Med Chem Res 20:321–332

    Article  CAS  Google Scholar 

  92. Vyas VK, Parikh H, Ghate M (2013) 3D QSAR studies on 5-(2-methylbenzimidazol-1-yl)-N-alkylthiophene-2-carboxamide derivatives as P. falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. Med Chem Res 22:2235–2243

    Article  CAS  Google Scholar 

  93. Wadood A, Zaheer-ulhaqb (2013) In silico identification of novel inhibitors against Plasmodium falciparum dihydroorate dehydrogenase. J Mol Graphics Model 40:40–47

    Article  CAS  Google Scholar 

  94. Tseng TS, Lee YC et al (2016) Comparative study between 3D-QSAR and docking-based pharmacophore models for potent Plasomodium falciparum dihydroorotate dehydrogenase inhibitors. Bioorg Med Chem Lett 26:265–271

    Article  CAS  PubMed  Google Scholar 

  95. Hou X, Chen X, Zhang M, Yan A (2016) QSAR study on the antimalarial activity of Plasmodium falciparum dihydroorotate dehydrogenase (Pf DHODH) inhibitors. SAR QSAR Environ Res 27:101–124

    Article  CAS  PubMed  Google Scholar 

  96. Pavadai E, El Mazouni F et al (2016) Identification of new human malaria parasite Plasmodium falciparum dihydroorotate dehydrogenase inhibitors by pharmacophore and structure-based virtual screening. J Chem Inf Model 56:548–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The University Grants Commission is gratefully acknowledged for the financial support to Shweta Bhagat (UGC, Grant No. 43395). The authors thank Department of Science and Technology (DST), Government of India, New Delhi, India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad V. Bharatam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhagat, S., Gahlawat, A., Bharatam, P.V. (2019). Structure-Based Drug Design of PfDHODH Inhibitors as Antimalarial Agents. In: Mohan, C. (eds) Structural Bioinformatics: Applications in Preclinical Drug Discovery Process. Challenges and Advances in Computational Chemistry and Physics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-05282-9_6

Download citation

Publish with us

Policies and ethics