Skip to main content

Turbo Analytics: Applications of Big Data and HPC in Drug Discovery

  • Chapter
  • First Online:
Structural Bioinformatics: Applications in Preclinical Drug Discovery Process

Abstract

In this current age of data-driven science, perceptive research is being carried out in the areas of genomics, network and metabolic biology, human, animal, organ and tissue models of drug toxicity, witnessing or capturing key biological events or interactions for drug discovery. Drug designing and repurposing involves understanding of ligand orientations for proper binding to the target molecules. The crucial requirement of finding right pose of small molecule in ligand–protein complex is done using drug docking and simulation methods. The domains of biology like genomics, biomolecular structure dynamics, and drug discovery are capable of generating vast molecular data in range of terabytes to petabytes. The analysis and visualization of this data pose a great challenge to the researchers and needs to be addressed in an accelerated and efficient way. So there is continuous need to have advanced analytics platform and algorithms which can perform analysis of this data in a faster way. Big data technologies may help to provide solutions for these problems of molecular docking and simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PCA:

Principal component analysis

RMSD:

Root-mean-square deviation

RMSF:

Root-mean-square fluctuation

MR:

MapReduce

References

  1. Schmidt B, Hildebrandt A (2017) Next-generation sequencing: big data meets high performance computing. Drug Discov Today 22:712–717

    Article  CAS  PubMed  Google Scholar 

  2. Tripathi R et al (2016) Next-generation sequencing revolution through big data analytics. Front Life Sci 9(2):119–149

    Article  CAS  Google Scholar 

  3. Taglang G, Jackson DB (2016) Use of “big data” in drug discovery and clinical trials. Gynecol Oncol 141(1):17–23

    Article  PubMed  Google Scholar 

  4. Leyens Lada et al (2017) Use of big data for drug development and for public and personal health and care. Genet Epidemiol 41(1):51–60

    Article  PubMed  Google Scholar 

  5. Richter BG, Sexton DP (2009) Managing and analyzing next-generation sequence data. PLoS Comput Biol 5(6):e1000369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Stephens ZD et al (2015) Big data: astronomical or genomical? PLoS Biol 13(7):e1002195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zhao S et al (2017) Cloud computing for next-generation sequencing data analysis. In: Cloud computing-architecture and applications. InTech, London

    Google Scholar 

  8. Bhuvaneshwar K et al (2015) A case study for cloud based high throughput analysis of NGS data using the globus genomics system. Comput Struct Biotechnol J 13:64–74

    Article  CAS  PubMed  Google Scholar 

  9. da Fonseca RR et al (2016) Next-generation biology: sequencing and data analysis approaches for non-model organisms. Mar Genomics 30:3–13

    Article  PubMed  Google Scholar 

  10. https://www.rcsb.org/

  11. Shaw DE et al (2008) Anton, a special-purpose machine for molecular dynamics simulation. Commun ACM 51(7):91–97

    Article  Google Scholar 

  12. Bernardi RC, Melo MCR, Schulten K (2015) Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochimica et Biophysica Acta (BBA) 1850(5):872–877

    Article  CAS  Google Scholar 

  13. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314.1:141–151.APA

    Google Scholar 

  14. Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10(7):507–519

    Article  CAS  PubMed  Google Scholar 

  15. Borhani DW, Shaw DE (2012) The future of molecular dynamics simulations in drug discovery. J Comput Aided Mol Des 26(1):15–26

    Article  CAS  PubMed  Google Scholar 

  16. Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9(1):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109(Suppl 1):69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. http://www.chemspider.com/

  19. Wishart DS et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34.suppl_1:D668–D672

    Article  CAS  Google Scholar 

  20. Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lengauer T, Rarey M (1996) Computational methods for biomolecular docking. Curr Opin Struct Biol 6(3):402–406

    Article  CAS  PubMed  Google Scholar 

  22. Sleigh Sara H, Barton Cheryl L (2010) Repurposing strategies for therapeutics. Pharm Med 24(3):151–159

    Article  Google Scholar 

  23. Oprea TI, Mestres J (2012) Drug repurposing: far beyond new targets for old drugs. AAPS J 14(4):759–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sagiroglu, Seref, and Duygu Sinanc (2013) Big data: a review. In: International conference on collaboration technologies and systems (CTS). IEEE

    Google Scholar 

  25. Nayak A, Poriya A, Poojary D (2013) Type of NOSQL databases and its comparison with relational databases. Int J Appl Inf Syst 5(4):16–19

    Google Scholar 

  26. Hadoop A (2009) Hadoop. 2009-03-06. http://hadoop.apache.org

  27. Zaharia M et al (2010) Spark: cluster computing with working sets. HotCloud 10(10-10):95

    Google Scholar 

  28. Allen WJ et al (2015) DOCK 6: impact of new features and current docking performance. J Comp Chem 36(15):1132–1156

    Article  CAS  Google Scholar 

  29. Jones G et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748

    Article  CAS  PubMed  Google Scholar 

  30. Trott Oleg, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Case DA et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26.16:1668–1688

    Article  CAS  Google Scholar 

  32. Brooks BR et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30.10:1545–1614

    Article  CAS  Google Scholar 

  33. Van Der Spoel D et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  CAS  Google Scholar 

  34. Phillips JC et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rysavy SJ, Bromley D, Daggett V (2014) DIVE: a graph-based visual-analytics framework for big data. IEEE Comput Graphics Appl 34(2):26–37

    Article  Google Scholar 

  36. Doerr S et al (2016) HTMD: high-throughput molecular dynamics for molecular discovery. J Chem Theory Comput 12(4):1845–1852

    Article  CAS  PubMed  Google Scholar 

  37. Tu T et al (2008) A scalable parallel framework for analyzing terascale molecular dynamics simulation trajectories. In: International conference for high performance computing, networking, storage and analysis. SC 2008. IEEE

    Google Scholar 

  38. Roe DR, Cheatham TE III (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095

    Article  CAS  PubMed  Google Scholar 

  39. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14(1):33–38

    Article  CAS  Google Scholar 

  40. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst 2(1–3):37–52

    Article  CAS  Google Scholar 

  41. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10(5):449–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Privalov PL, Crane-Robinson C (2017) Role of water in the formation of macromolecular structures. Eur Biophys J 46(3):203–224

    Article  CAS  PubMed  Google Scholar 

  43. Pace CN, Fu H, Lee Fryar K, Landua J, Trevino SR, Schell D, Thurlkill RL, Imura S, Scholtz JM, Gajiwala K, Sevcik J (2014) Contribution of hydrogen bonds to protein stability. Protein Sci 23(5):652–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yuriev E, Chalmers D, Capuano B (2009) Conformational analysis of drug molecules: a practical exercise in the medicinal chemistry course. J Chem Educ 86(4):477

    Article  CAS  Google Scholar 

  46. Li J, Ehlers T, Sutter J, Varma-O’Brien S, Kirchmair J (2007) CAESAR: a new conformer generation algorithm based on recursive buildup and local rotational symmetry consideration. J Chem Inf Model 47(5):1923–1932

    Article  CAS  PubMed  Google Scholar 

  47. Lagorce D, Pencheva T, Villoutreix BO, Miteva MA (2009) DG-AMMOS: a new tool to generate 3D conformation of small molecules using distance geometry and automated molecular mechanics optimization for in silico screening. BMC Chem. Bio 9(1):6

    Article  CAS  Google Scholar 

  48. Sefraoui O, Aissaoui M, Eleuldj M (2012) OpenStack: toward an open-source solution for cloud computing. Int J Comput Appl 55(3):38–42

    Google Scholar 

  49. Stewart JJP (1990) MOPAC: a semiempirical molecular orbital program. J Comput Aided Mol Des 4(1):1–103

    Article  PubMed  Google Scholar 

  50. Hawkins PC, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and cambridge structural database. J Chem Inf Model 50(4):572–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ware B (2002) Open source development with LAMP: using Linux, Apache, MySQL and PHP. Addison-Wesley Longman Publishing Co., Inc., Reading

    Google Scholar 

  52. https://www.rabbitmq.com/

  53. Hukushima K, Nemoto K (1996) Exchange Monte Carlo method and application to spin glass simulations. J Phy Soc Jpn 65(6):1604–1608

    Article  CAS  Google Scholar 

  54. Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3(8):673–683

    Article  CAS  PubMed  Google Scholar 

  55. Novac Natalia (2013) Challenges and opportunities of drug repositioning. Trends Pharmacol Sci 34(5):267–272

    Article  CAS  PubMed  Google Scholar 

  56. Smith Kelly M, Romanelli Frank (2005) Recreational use and misuse of phosphodiesterase 5 inhibitors. J Am Pharm Assoc 45(1):63–75

    Article  Google Scholar 

  57. Pfister DG (2012) Off-label use of oncology drugs: the need for more data and then some. J Clin Oncol, 584–586

    Article  PubMed  Google Scholar 

  58. Jin G, Wong STC (2014) Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today 19(5):637–644

    Article  PubMed  Google Scholar 

  59. Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296(5573):1636–1639

    Article  CAS  PubMed  Google Scholar 

  60. Khrenova MG et al (2014) Modeling the role of G12 V and G13 V Ras mutations in the Ras-GAP-catalyzed hydrolysis reaction of guanosine triphosphate. Biochemistry 53(45):7093–7099

    Article  CAS  PubMed  Google Scholar 

  61. Spoerner M et al (2010) Conformational states of human rat sarcoma (Ras) protein complexed with its natural ligand GTP and their role for effector interaction and GTP hydrolysis. J Biol Chem 285(51):39768–39778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ma J, Karplus M (1997) Molecular switch in signal transduction: reaction paths of the conformational changes in ras p21. Proc Natl Acad Sci USA 94(22):11905–11910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. White MA et al (1995) Multiple Ras functions can contribute to mammalian cell transformation. Cell 80(4):533–541

    Article  CAS  PubMed  Google Scholar 

  64. Schubbert S, Shannon K, Bollag G (2007) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7(4):295

    Article  CAS  PubMed  Google Scholar 

  65. Gao C, Eriksson LA (2013) Impact of mutations on K-Ras-p 120GAP interaction. Comput Mol BioSci 3(02):9

    Article  CAS  Google Scholar 

  66. Shurki A, Warshel A (2004) Why does the Ras switch “break” by oncogenic mutations? Proteins: Struct Funct Bioinf 55(1):1–10

    Article  CAS  Google Scholar 

  67. Lu S et al (2016) Ras conformational ensembles, allostery, and signaling. Chem Rev 116(11):6607–6665

    Article  CAS  PubMed  Google Scholar 

  68. Sharma N, Sonavane U, Joshi R (2017) Differentiating the pre-hydrolysis states of wild-type and A59G mutant HRas: an insight through MD simulations. Comput Biol Chem 69:96–109

    Article  CAS  PubMed  Google Scholar 

  69. Sharma N, Sonavane U, Joshi R (2014) Probing the wild-type HRas activation mechanism using steered molecular dynamics, understanding the energy barrier and role of water in the activation. Eur Biophys J 43(2-3):81–95

    Article  CAS  PubMed  Google Scholar 

  70. Wang W, Fang G, Rudolph J (2012) Ras inhibition via direct Ras binding—is there a path forward? Bioorg Med Chem Lett 22(18):5766–5776

    Article  CAS  PubMed  Google Scholar 

  71. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich, SB (2010) The potential and challenges of nanopore sequencing. In: Nanoscience and technology: A collection of reviews from Nature Journals, pp 261–268

    Chapter  Google Scholar 

  72. https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra R. Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, R.R. et al. (2019). Turbo Analytics: Applications of Big Data and HPC in Drug Discovery. In: Mohan, C. (eds) Structural Bioinformatics: Applications in Preclinical Drug Discovery Process. Challenges and Advances in Computational Chemistry and Physics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-05282-9_11

Download citation

Publish with us

Policies and ethics