Skip to main content

Band Selection with Bhattacharyya Distance Based on the Gaussian Mixture Model for Hyperspectral Image Classification

  • Conference paper
  • First Online:
Recent Advances in Electrical and Information Technologies for Sustainable Development

Abstract

This paper investigates a new band selection approach with the Bhattacharyya distance based on the Gaussian Mixture Model (GMM) for Hyperspectral image classification. Our main motivation to model the Bhattacharyya distance using GMM is due to the fact that this tool is well known for capturing non-Gaussian statistic of multivariate data and that is less sensitive to estimation error problem than purely non-parametric models. To estimate the parameters of GMM, a Robust Expectation-Maximization (REM) algorithm is used. REM solves the shortcoming of the classical Expectation-Maximization (EM) algorithm by dynamically adapting the number of clusters to the data structure. The selected bands with the proposed approach are compared, in terms of classification accuracy, to the Bhattacharyya expressed in its parametric form and the Bhattacharyya modelled with GMM using the classical EM algorithm. The experiment was carried out on two real hyperspectral images, the Indiana Pines (92AV3C) sub-scene and the Kennedy Space Center (KSC) dataset, and the experimental results have demonstrated the effectiveness of our proposed method in terms of classification accuracy with fewer bands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AitKerroum, M., Hammouch, A., & Aboutajdine, D. (2010). Textural feature selection by joint mutual information based on gaussian mixture model for multispectral image classification. Pattern Recognition Letters, 31(10), 1168–1174. https://doi.org/10.1016/j.patrec.2009.11.010.

    Article  Google Scholar 

  • Baumgardner, M. F., Biehl, L. L., & Landgrebe, D. A. (2015). 220 band aviris hyperspectral image data set: June 12, 1992 indian pine test site 3. https://doi.org/10.4231/r7rx991c, https://purr.purdue.edu/publications/1947/1.

  • Burrell, L., Smart, O., Georgoulas, G. K., Marsh, E., & Vachtsevanos, G. J. (2007). Evaluation of feature selection techniques for analysis of functional MRI and EEG. In DMIN (pp. 256–262).

    Google Scholar 

  • Camps-Valls, G., & Bruzzone, L. (2009). Kernel methods for remote sensing data analysis. Wiley.

    Google Scholar 

  • Datta, A., Ghosh, S., & Ghosh, A. (2014). Band elimination of hyperspectral imagery using partitioned band image correlation and capacitory discrimination. International Journal of Remote Sensing, 35(2), 554–577. https://doi.org/10.1080/01431161.2013.871392.

    Article  Google Scholar 

  • Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification (2nd ed.). New York, NY, USA: Wiley-Interscience.

    MATH  Google Scholar 

  • Dundar, M. M., & Landgrebe, D. (2002). A model-based mixture-supervised classification approach in hyperspectral data analysis. IEEE Transactions on Geoscience and Remote Sensing, 40(12), 2692–2699. https://doi.org/10.1109/TGRS.2002.807010.

    Article  Google Scholar 

  • Dundar, M. M., & Landgrebe, D. A. (2004). Toward an optimal supervised classifier for the analysis of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 42(1), 271–277. https://doi.org/10.1109/TGRS.2003.817813.

    Article  Google Scholar 

  • GIC UdPV. (2015). Hyperspectral remote sensing scenes—kennedy space center (KSC). http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Kennedy_Space_Center.28KSC.29.

  • Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: A new learning scheme of feedforward neural networks. In 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541) (Vol. 2, pp. 985–990). https://doi.org/10.1109/ijcnn.2004.1380068.

  • Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1), 489–501. https://doi.org/10.1016/j.neucom.2005.12.126.

    Article  Google Scholar 

  • Jimenez, L. O., & Landgrebe, D. A. (1998). Supervised classification in high-dimensional space: Geometrical, statistical, and asymptotical properties of multivariate data. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 28(1), 39–54. https://doi.org/10.1109/5326.661089.

  • Kuo, B. C., & Landgrebe, D. A. (2002). A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2486–2494. https://doi.org/10.1109/TGRS.2002.805088.

    Article  Google Scholar 

  • Le Bris, A., Chehata, N., Briottet, X., & Paparoditis, N. (2015). Extraction of optimal spectral bands using hierarchical band merging out of hyperspectral data. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(3), 459.

    Article  Google Scholar 

  • Lee, C., & Landgrebe, D. A. (1993). Feature extraction based on decision boundaries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(4), 388–400. https://doi.org/10.1109/34.206958.

    Article  Google Scholar 

  • Li, W., Prasad, S., & Fowler, J. E. (2014). Hyperspectral image classification using gaussian mixture models and markov random fields. IEEE Geoscience and Remote Sensing Letters, 11(1), 153–157. https://doi.org/10.1109/LGRS.2013.2250905.

    Article  Google Scholar 

  • Martinez, W., & Martinez, A. (2007). Computational Statistics Handbook with MATLAB (2nd ed.). Chapman & Hall/CRC Computer Science & Data Analysis: CRC Press.

    MATH  Google Scholar 

  • Richards, J. (2012). Remote sensing digital image analysis: An introduction. Berlin: Springer. https://books.google.com/books?id=ETfwQnBMP4UC.

  • Shahshahani, B. M., & Landgrebe, D. A. (1994). The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon. IEEE Transactions on Geoscience and Remote Sensing, 32(5), 1087–1095. https://doi.org/10.1109/36.312897.

    Article  Google Scholar 

  • Simin, C., Rongqun, Z., Wenling, C., & Hui, Y. (2009). Band selection of hyperspectral images based on bhattacharyya distance. WSEAS Transactions on Information Science and Applications, 6(7), 1165–1175.

    Google Scholar 

  • Tadjudin, S., & Landgrebe, D. A. (2000). Robust parameter estimation for mixture model. IEEE Transactions on Geoscience and Remote Sensing, 38(1), 439–445. https://doi.org/10.1109/36.823939.

    Article  Google Scholar 

  • Theodoridis, S., & Koutroumbas, K. (2009). Pattern recognition (2nd ed.). Elsevier Science.

    Google Scholar 

  • Thomaz, C. E., Gillies, D. F., & Feitosa, R. Q. (2004). A new covariance estimate for bayesian classifiers in biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(2), 214–223. https://doi.org/10.1109/TCSVT.2003.821984.

    Article  Google Scholar 

  • Wang, S., & Wang, C. (2015). Research on dimension reduction method for hyperspectral remote sensing image based on global mixture coordination factor analysis. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7), 159.

    Article  Google Scholar 

  • Webb, A. (2003). Statistical pattern recognition (2nd ed.). Wiley InterScience Electronic Collection, Wiley.

    Google Scholar 

  • Yang, L., & Lin Yang, M. S., Lai, C. Y., & Lin, C. Y. (2012). A robust EM clustering algorithm for Gaussian mixture models. Pattern Recognition, 45(11), 3950–3961, https://doi.org/10.1016/j.patcog.2012.04.031.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Lahlimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lahlimi, M., Ait Kerroum, M., Fakhri, Y. (2019). Band Selection with Bhattacharyya Distance Based on the Gaussian Mixture Model for Hyperspectral Image Classification. In: El Hani, S., Essaaidi, M. (eds) Recent Advances in Electrical and Information Technologies for Sustainable Development. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-05276-8_10

Download citation

Publish with us

Policies and ethics