Skip to main content

Healing Agents Used for Mechanical Recovery in Nanotextured Systems

  • Chapter
  • First Online:
  • 463 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 105))

Abstract

Several main healing agents currently used in self-healing nanotextured materials are discussed in this section. These include dicyclopentadiene (DCPD) and Grubbs’ catalyst (Sect. 2.1) and dimethyl siloxane (DMS , a resin monomer ) and dimethyl-methyl hydrogen -siloxane (curing agent ) polymerized as poly(dimethyl siloxane) (PDMS, Sect. 2.2). Several other elastomers used for self-healing are discussed in Sect. 2.3. Self-healing agents can also comprise epoxy -hardener systems (Sect. 2.4), and gels (Sect. 2.5).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdul Khalil HPS, Saurabh CK, Adnan AS, Nurul Fazita MR, Syakir MI, Davoudpour Y, Rafatullah M, Abdullah CK, Haafiz MKM, Dungani R (2016) A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: properties and their applications. Carbohydr Polym 150:216–226

    Article  Google Scholar 

  • An S, Liou M, Song KY, Jo HS, Lee MW, Al-Deyab SS, Yarin AL, Yoon SS (2015) Highly flexible transparent self-healing composite based on electrospun core–shell nanofibers produced by coaxial electrospinning for anti-corrosion and electrical insulation. Nanoscale 7:17778–17785

    Article  CAS  Google Scholar 

  • Bai J, Li H, Shi Z, Yin J (2018) An eco-friendly scheme for the cross-linked polybutadiene elastomer via thiolene and Diels-Alder click chemistry. Macromolecules 48:3539–3549

    Article  Google Scholar 

  • Blaiszik BJ, Caruso MM, McIlroy DA, Moore JS, White SR, Sottos NR (2009) Microcapsules filled with reactive solutions for self-healing materials. Polymer 50:990–997

    Article  CAS  Google Scholar 

  • Brown EN, White SR, Sottos NR (2004) Microcapsule induced toughening in a self-healing polymer composite. J Mater Sci 39:1703–1710

    Article  CAS  Google Scholar 

  • Campbell DJ, Beckman KJ, Calderon CE, Doolan PW, Ottosen RM, Ellis AB, Lisensky GC (1999) Replication and compression of bulk and surface structures with polydimethylsiloxane elastomer. J Chem Educ 75:537–541

    Google Scholar 

  • Chen C, Peters K, Li Y (2013) Self-healing sandwich structures incorporating an interfacial layer with vascular network. Smart Mater Struct 22:025031

    Article  Google Scholar 

  • Chen L, Chen H, Yao X, Ma X, Tian H (2015a) A hybrid supramolecular polymeric hydrogel with rapid self-healing property. Chem Asian J 10:2352–2355

    Article  CAS  Google Scholar 

  • Chen S, Mo F, Yang Y, Stadler FJ, Chen S, Yang H, Ge Z, Zhuo H (2015b) Development of zwitterionic polyurethanes with multi-shape memory effects and self-healing properties. J Mater Chem A 3:2924–2933

    Article  CAS  Google Scholar 

  • Chen Y, Guan Z (2015) Self-healing thermoplastic elastomer brush copolymers having a glassy polymethylmethacrylate backbone and rubbery polyacrylate-amide brushes. Polymer 69:249–254

    Article  CAS  Google Scholar 

  • Cho SH, Andersson HM, White SR, Sottos NR, Braun PV (2006) Polydimethylsiloxane-based self-healing materials. Adv Mater 18:997–1000

    Article  CAS  Google Scholar 

  • Das A, Sallat A, Bohme F, Suckow M, Basu D, Wießner S, Stöckelhuber KW, Voit B, Heinrich G (2015) Ionic modification turns commercial rubber into a self-healing material. ACS Appl Mater Interfaces 7:20623–20630

    Article  CAS  Google Scholar 

  • Denq BL, Hu YS, Chen LW, Chiu WY, Wu TR (1999) The curing reaction and physical properties of DGEBA/DETA epoxy resin blended with propyl ester phosphazene. J Appl Polym Sci 74:229–237

    Article  CAS  Google Scholar 

  • Faghihnejad A, Feldman KE, Yu J, Tirrell MV, Israelachvili JN, Hawker CJ, Kramer EJ, Zeng HB (2014) Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups. Adv Funct Mater 24:2322–2333

    Article  CAS  Google Scholar 

  • Fan F, Szpunar J (2015) The self-healing mechanism of an industrial acrylic elastomer. J Appl Polym Sci 132:42135

    Google Scholar 

  • Farquharson S, Smith W, Rose J, Shaw M (2002) Correlations between molecular (Raman) and macroscopic (rheology) data for process monitoring of thermoset composite. J Process Anal Chem 7:45–53

    CAS  Google Scholar 

  • Flint S, Markle T, Thompson S, Wallace E (2012) Bisphenol A exposure, effects, and policy: a wildlife perspective. J Environ Manage 104:19–34

    Article  CAS  Google Scholar 

  • Garcia FG, Soares BG, Pita VJRR, Sanchez R, Rieumont J (2007) Mechanical properties of epoxy networks based on DGEBA and aliphatic amines. J Appl Polym Sci 106:2047–2055

    Article  CAS  Google Scholar 

  • Gold BJ, Hovelmann CH, Weiss C, Radulescu A, Allgaier J, Pyckhout-Hintzen W, Wischnewski A, Richter D (2016) Sacrificial bonds enhance toughness of dual polybutadiene networks. Polymer 87:123–128

    Article  CAS  Google Scholar 

  • Goosey MT (1985) Epoxide resins and their formulation. In: Goosey MT (ed) Plastics for electronics. Springer, Netherlands, Dordrecht, pp 99–136

    Chapter  Google Scholar 

  • Harmon JP, Bass R (2014) Self-healing polycarbonate containing polyurethane nanotube composite. University of South Florida; US Patent 8,846,801 B1, Sep. 30

    Google Scholar 

  • Huang M, Yang J (2011) Facile microencapsulation of HDI for self-healing anticorrosion coatings. J Mater Chem 21:11123

    Article  CAS  Google Scholar 

  • Jasra R, Maiti M, Srivastava V. (2015) Reliance Industries Limited, US Patent 20150045496, Feb. 12

    Google Scholar 

  • Jolley ST, Williams MK, Gibson TL, Smith TM, Caraccio AJ, Li W (2012) Self-healing polymer materials for wire insulation, polyimides, flat surfaces, and inflatable structures. National Aeronautics and Space Administration (NASA); Dec. 20

    Google Scholar 

  • Jones AR, Watkins CA, White SR, Sottos NR (2015) Self-healing thermoplastic-toughened epoxy. Polymer 74:254–261

    Article  CAS  Google Scholar 

  • Keller MW, Hampton K, McLaury B (2013) Self-healing of erosion damage in a polymer coating. Wear 307:218–225

    Article  CAS  Google Scholar 

  • Keller MW, White SR, Sottos NR (2007) A self-healing poly(dimethyl siloxane) elastomer. Adv Mater 17:2399–2404

    CAS  Google Scholar 

  • Lee MW, An S, Jo HS, Yoon SS, Yarin AL (2015a) Self-healing nanofiber-reinforced polymer composites: 1. Tensile testing and recovery of mechanical properties. ACS Appl Mater Interfaces 7:19546–19554

    Article  CAS  Google Scholar 

  • Lee MW, An S, Jo HS, Yoon SS, Yarin AL (2015b) Self-healing nanofiber-reinforced polymer composites: 2. Delamination/debonding, and adhesive and cohesive properties. ACS Appl Mater Interfaces 7:19555–19561

    Article  CAS  Google Scholar 

  • Lee MW, An S, Kim YI, Yoon SS, Yarin AL (2018) Self-healing three-dimensional bulk materials based on core-shell nanofibers. Chem Eng J 334:1093–1100

    Article  CAS  Google Scholar 

  • Lee MW, An S, Lee C, Liou M, Yarin AL, Yoon SS (2014a) Self-healing transparent core–shell nanofiber coatings for anti-corrosive protection. J Mater Chem A 2:7045–7053

    Article  CAS  Google Scholar 

  • Lee MW, An S, Lee C, Liou M, Yarin AL, Yoon SS (2014b) Hybrid self-healing matrix using core−shell nanofibers and capsuleless microdroplets. ACS Appl Mater Interfaces 6:10461–10468

    Article  CAS  Google Scholar 

  • Lee MW, Jo HS, Yoon SS, Yarin AL (2017a) Thermally driven self-healing using copper nanofiber heater. Appl Phys Lett 111:011902

    Article  Google Scholar 

  • Lee MW, Sett S, An S, Yoon SS, Yarin AL (2017b) Self-healing nano-textured vascular-like materials: Mode I crack propagation. ACS Appl Mater Interfaces 9:27223–27231

    Article  CAS  Google Scholar 

  • Lee MW, Sett S, Yoon SS, Yarin AL (2016a) Fatigue of self-healing nanofiber-based composites: static test and subcritical crack propagation. ACS Appl Mater Interfaces 8:18462–18470

    Article  CAS  Google Scholar 

  • Lee MW, Sett S, Yoon SS, Yarin AL (2016b) Self-healing of nanofiber-based composites in the course of stretching. Polymer 103:180–188

    Article  CAS  Google Scholar 

  • Lee MW, Yoon SS, Yarin AL (2016c) Solution-blown core−shell self-healing nano- and microfibers. ACS Appl Mater Interfaces 8:4955–4962

    Article  CAS  Google Scholar 

  • Lenhardt JM, Kim SH, Nelson AJ, Singhal P, Baumann TF, Satcher JH (2013) Increasing the oxidative stability of poly(dicyclopentadiene) aerogels by hydrogenation. Polymer 54:542–547

    Article  CAS  Google Scholar 

  • Li G, Ajisafe O, Meng H (2013) Effect of strain hardening of shape memory polymer fibers on healing efficiency of thermosetting polymer composites. Polymer 54:920–928

    Article  CAS  Google Scholar 

  • Lutz A, van der Berg O, Damme JV, Verheyen K, Bauters E, Graeve ID, Du Prez FE, Terryn H (2015) A shape-recovery polymer coating for the corrosion protection of metallic surfaces. ACS Appl Mater Interfaces 7:175–183

    Article  CAS  Google Scholar 

  • Mauldin TC, Rule JD, Sottos NR, White SR, Moore JS (2007) Self-healing kinetics and the stereoisomers of dicyclopentadiene. J R Soc Interface 4:389–393

    Article  CAS  Google Scholar 

  • Neisiany RE, Khorasani SN, Lee JKY, Ramakrishna S (2016) Encapsulation of epoxy and amine curing agent in PAN nanofibers by coaxial electrospinning for self-healing purposes. RSC Adv 6:70056–70063

    Article  CAS  Google Scholar 

  • Ou R, Eberts K, Skandan G (2015) Phase separated self-healing polymer coatings. NEI Corporation, US Patent 8,987,352 B1, Mar. 24

    Google Scholar 

  • Park JH, Braun PV (2010) Coaxial electrospinning of self-healing coatings. Adv Mater 22:496–499

    Article  CAS  Google Scholar 

  • Patrick JF, Hart KR, Krull BP, Diesendruck CE, Moore JS, White SR, Sottos NR (2014) Continuous self-healing life cycle in vascularized structural composites. Adv Mater 26:4302–4308

    Article  CAS  Google Scholar 

  • Perring M, Long TR, Bowden NB (2010) Epoxidation of the surface of polydicyclopentadiene for the self-assembly of organic monolayers. J Mater Chem 20:8679–8685

    Article  CAS  Google Scholar 

  • Rahman MA, Sartore L, Bignotti F, Landro LD (2013) Autonomic self-healing in epoxidized natural rubber. ACS Appl Mater Interfaces 5:1494–1502

    Article  CAS  Google Scholar 

  • Raquez JM, Deleglisea M, Lacrampea MF, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35:487–509

    Article  CAS  Google Scholar 

  • Saeed MU, Li BB, Chen ZF, Cui S (2016) Self-healing of low-velocity impact and mode-I delamination damage in polymer composites via microchannels. Express Polymer Letters 10:337–348

    Article  Google Scholar 

  • Shahabudin N, Yahy R, Gan SN (2016) Microcapsules of poly(urea-formaldehyde) (PUF) containing alkyd from palm oil. Mater Today Proc 3:S88–S95

    Article  Google Scholar 

  • Sinha-Ray S, Pelot DD, Zhou ZP, Rahman A, Wu X-F, Yarin AL (2012) Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning, solution blowing and intercalation. J Mater Chem 22:9138–9146

    Article  CAS  Google Scholar 

  • Spoljaric S, Salminen A, Luong ND, Seppälä J (2014) Stable, self-healing hydrogels from nanofibrillated cellulose, poly(vinyl alcohol) and borax via reversible crosslinking. Eur Polym J 56:105–117

    Article  CAS  Google Scholar 

  • Turkenburg DH, Hv B, Funke B, Schmider M, Janke D, Fischer HR (2015) Polyurethane adhesives containing Diels–Alder-based thermoreversible bonds. J Appl Polym Sci 132:41944

    Google Scholar 

  • Urban MW, Ghosh B (2015) Self-repairing cyclic oxide-substituted chitosan polyurethane networks. University of Southern Mississippi. US Patent 9,200,089

    Google Scholar 

  • Vahedi V, Pasbakhsh P, Piao CS, Seng CE (2015) A facile method for preparation of self-healing epoxy composites: using electrospun nanofibers as microchannels. J Mater Chem A 3:16005–16012

    Article  CAS  Google Scholar 

  • van der Zwaag S (ed) (2007) Self healing materials: an alternative approach to 20 centuries of materials science. Springer, Heidelberg

    Google Scholar 

  • Wang W, Xu L, Li X, Yang Y, An E (2014) Self-healing properties of protective coatings containing isophorone diisocyanate microcapsules on carbon steel surfaces. Corros Sci 80:528–535

    Article  CAS  Google Scholar 

  • White SR, Moore JS, Sottos NR, Krull BP, Cruz WAS, Gergely RCR (2014) Restoration of large damage volumes in polymers. Science 344:620–623

    Google Scholar 

  • White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797

    Article  CAS  Google Scholar 

  • Willocq B, Bose RK, Khelifa F, Garcia SJ, Dubois P, Raquez JM (2016) Healing by the Joule effect of electrically conductive poly(ester-urethane)/carbon nanotube nanocomposites. J Mater Chem A 4:4089–4097

    Article  CAS  Google Scholar 

  • Wu X-F, Rahman A, Zhou Z, Pelot DD, Sinha-Ray S, Chen B, Payne S, Yarin AL (2013) Electrospinning core-shell nanofibers for interfacial toughening and self-healing of carbon-fiber/epoxy composites. J Appl Polym Sci 129:1383–1393

    Article  CAS  Google Scholar 

  • Wypych G (2017) Self-healing materials: principles and technology. ChemTec Publishing, Toronto

    Google Scholar 

  • Xiao Y, Huang H, Peng X (2017) Synthesis of self-healing waterborne polyurethanes containing sulphonate groups. RSC Adv 7:20093

    Article  CAS  Google Scholar 

  • Yang J, Keller MW, Moore JS, White SR, Sottos NR (2008) Microencapsulation of isocyanates for self-healing polymers. Macromol Rapid Commun 41:9650–9655

    CAS  Google Scholar 

  • Yerro O, Radojevic V, Radovic I, Petrovic M, Uskokovic PS, Stojanovic DB, Aleksic R (2016) Thermoplastic acrylic resin with self-healing properties. Polym Eng Sci 56:251–257

    Article  CAS  Google Scholar 

  • Zhang H, Wang P, Yang J (2014a) Self-healing epoxy via epoxy–amine chemistry in dual hollow glass bubbles. Compos Sci Technol 94:23–29

    Article  CAS  Google Scholar 

  • Zhang H, Yang J (2014) Development of self-healing polymers via amine–epoxy chemistry: I. Properties of healing agent carriers and the modelling of a two-part self-healing system. Smart Mater Struct 23:065003

    Article  Google Scholar 

  • Zhang P, Li G (2015) Healing-on-demand composites based on polymer artificial muscle. Polymer 64:29–38

    Article  CAS  Google Scholar 

  • Zhang X-C, Ji H-W, Qiao Z-X (2014b) Residual stress in self-healing microcapsule-loaded epoxy. Mater Lett 137:9–12

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander L. Yarin .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yarin, A.L., Lee, M.W., An, S., Yoon, S.S. (2019). Healing Agents Used for Mechanical Recovery in Nanotextured Systems. In: Self-Healing Nanotextured Vascular Engineering Materials. Advanced Structured Materials, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-030-05267-6_2

Download citation

Publish with us

Policies and ethics