Skip to main content

Advantages of the Eye as a Target Organ for Cell-Based Therapy in the Central Nervous System

  • Chapter
  • First Online:
Cell-Based Therapy for Degenerative Retinal Disease

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 396 Accesses

Abstract

Advantages of the eye as a target organ for cell-based therapy are as follows. The anatomy and physiology of the retina have been characterized in detail. Surgical access to the vitreous cavity and the subretinal space are well established with an excellent safety record. The eye is an immune privileged organ, particularly the subretinal space, which may reduce the need for long-term immune suppression of transplant recipients. High-resolution noninvasive imaging technology permits visualization and functional assessment of the transplanted cells in situ. These imaging and monitoring capabilities permit development of an iterative pathway to successful transplant paradigms in human patients as well as precise modulation of immunotherapy should it be needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geller AM, Sieving PA. How many cones are required to “see?”: lessons from Stargardt’s macular dystrophy and from modeling with degenerate photoreceptor arrays. In: Hollyfield JG, et al. editors. Retinal degeneration. New York: Plenum Press; 1993. p. 25–34.

    Chapter  Google Scholar 

  2. Zarbin M. Cell-based therapy for degenerative retinal disease. Trends Mol Med. 2016;22(2):115–34.

    Article  PubMed  Google Scholar 

  3. Sung CH, Chuang JZ. The cell biology of vision. J Cell Biol. 2010;190(6):953–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mustafi D, Engel AH, Palczewski K. Structure of cone photoreceptors. Prog Retin Eye Res. 2009;28(4):289–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barber AC, Hippert C, Duran Y, et al. Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci U S A. 2013;110(1):354–9.

    Article  CAS  PubMed  Google Scholar 

  6. Wang S, Lu B, Lund RD. Morphological changes in the Royal College of Surgeons rat retina during photoreceptor degeneration and after cell-based therapy. J Comp Neurol. 2005;491(4):400–17.

    Article  PubMed  Google Scholar 

  7. Gullapalli VK, Sugino IK, Van Patten Y, Shah S, Zarbin MA. Impaired RPE survival on aged submacular human Bruch’s membrane. Exp Eye Res. 2005;80(2):235–48.

    Article  CAS  PubMed  Google Scholar 

  8. Sugino IK, Sun Q, Wang J, et al. Comparison of FRPE and human embryonic stem cell-derived RPE behavior on aged human Bruch’s membrane. Invest Ophthalmol Vis Sci. 2011;52(8):4979–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sugino IK, Rapista A, Sun Q, et al. A method to enhance cell survival on Bruch’s membrane in eyes affected by age and age-related macular degeneration. Invest Ophthalmol Vis Sci. 2011;52(13):9598–609.

    Article  PubMed  Google Scholar 

  10. Sugino IK, Sun Q, Springer C, et al. Two bioactive molecular weight fractions of a conditioned medium enhance RPE cell survival on age-related macular degeneration and aged Bruch’s membrane. Transl Vis Sci Technol. 2016;5(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dhande OS, Stafford BK, Lim JA, Huberman AD. Contributions of retinal ganglion cells to subcortical visual processing and behaviors. Annu Rev Vis Sci. 2015;1:291–328.

    Article  PubMed  Google Scholar 

  12. Chang EE, Goldberg JL. Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology. 2012;119(5):979–86.

    Article  PubMed  Google Scholar 

  13. Otani A, Dorrell MI, Kinder K, et al. Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin Invest. 2004;114(6):765–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Levkovitch-Verbin H, Sadan O, Vander S, et al. Intravitreal injections of neurotrophic factors secreting mesenchymal stem cells are neuroprotective in rat eyes following optic nerve transection. Invest Ophthalmol Vis Sci. 2010;51(12):6394–400.

    Article  PubMed  Google Scholar 

  15. Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R. Intravitreal injection of autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina. 2011;31(6):1207–14.

    Article  PubMed  Google Scholar 

  16. Klassen H. Stem cells in clinical trials for treatment of retinal degeneration. Expert Opin Biol Ther. 2016;16(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  17. Park SS, Moisseiev E, Bauer G, et al. Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retin Eye Res. 2017;56:148–65.

    Article  CAS  PubMed  Google Scholar 

  18. Moisseiev E, Smit-McBride Z, Oltjen S, et al. Intravitreal administration of human bone marrow CD34+ stem cells in a murine model of retinal degeneration. Invest Ophthalmol Vis Sci. 2016;57(10):4125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Binder S, Stanzel BV, Krebs I, Glittenberg C. Transplantation of the RPE in AMD. Prog Retin Eye Res. 2007;26(5):516–54.

    Article  PubMed  Google Scholar 

  20. MacLaren RE, Uppal GS, Balaggan KS, et al. Autologous transplantation of the retinal pigment epithelium and choroid in the treatment of neovascular age-related macular degeneration. Ophthalmology. 2007;114(3):561–70.

    Article  PubMed  Google Scholar 

  21. Lu B, Tai YC, Humayun MS. Microdevice-based cell therapy for age-related macular degeneration. Dev Ophthalmol. 2014;53:155–66.

    Article  PubMed  Google Scholar 

  22. Diniz B, Thomas P, Thomas B, et al. Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci. 2013;54(7):5087–96.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hsiung J, Zhu D, Hinton DR. Polarized human embryonic stem cell-derived retinal pigment epithelial cell monolayers have higher resistance to oxidative stress-induced cell death than nonpolarized cultures. Stem Cells Transl Med. 2015;4(1):10–20.

    Article  CAS  PubMed  Google Scholar 

  24. Streilein JW. Ocular immune privilege: the eye takes a dim but practical view of immunity and inflammation. J Leukoc Biol. 2003;74(2):179–85.

    Article  CAS  PubMed  Google Scholar 

  25. Wenkel H, Streilein JW. Analysis of immune deviation elicited by antigens injected into the subretinal space. Invest Ophthalmol Vis Sci. 1998;39(10):1823–34.

    CAS  PubMed  Google Scholar 

  26. Wenkel H, Streilein JW. Evidence that retinal pigment epithelium functions as an immune- privileged tissue. Invest Ophthalmol Vis Sci. 2000;41(11):3467–73.

    CAS  PubMed  Google Scholar 

  27. Zamiri P, Masli S, Streilein JW, Taylor AW. Pigment epithelial growth factor suppresses inflammation by modulating macrophage activation. Invest Ophthalmol Vis Sci. 2006;47(9):3912–8.

    Article  PubMed  Google Scholar 

  28. Kaplan HJ, Leibole MA, Tezel T, Ferguson TA. Fas ligand (CD95 ligand) controls angiogenesis beneath the retina. Nat Med. 1999;5(3):292–7.

    Article  CAS  PubMed  Google Scholar 

  29. Zamiri P, Zhang Q, Streilein JW. Vulnerability of allogeneic retinal pigment epithelium to immune T-cell-mediated damage in vivo and in vitro. Invest Ophthalmol Vis Sci. 2004;45(1):177–84.

    Article  PubMed  Google Scholar 

  30. Enzmann VSM, Wiedemann P, Kohen L. Down-regulation of MHC class II expression on bovine retinal pigment epithelial cells by cytokines. Ophthalmic Res. 1999;31:256–66.

    Article  CAS  PubMed  Google Scholar 

  31. Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, Seiler MJ. Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am J Ophthalmol. 2008;146(2):172–82.

    Article  PubMed  Google Scholar 

  32. Tezel TH, Del Priore LV, Berger AS, Kaplan HJ. Adult retinal pigment epithelial transplantation in exudative age-related macular degeneration. Am J Ophthalmol. 2007;143(4):584–95.

    Article  PubMed  Google Scholar 

  33. Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713–20.

    Article  CAS  PubMed  Google Scholar 

  34. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16.

    Article  PubMed  Google Scholar 

  35. West EL, Pearson RA, Barker SE, et al. Long-term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation. Stem Cells. 2010;28(11):1997–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boyd AS, Wood KJ. Variation in MHC expression between undifferentiated mouse ES cells and ES cell-derived insulin-producing cell clusters. Transplantation. 2009;87(9):1300–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tian L, Catt JW, O’Neill C, King NJ. Expression of immunoglobulin superfamily cell adhesion molecules on murine embryonic stem cells. Biol Reprod. 1997;57(3):561–8.

    Article  CAS  PubMed  Google Scholar 

  38. Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science. 2001;292(5517):740–3.

    Article  CAS  PubMed  Google Scholar 

  39. Fairchild PJ, Nolan KF, Cartland S, Waldmann H. Embryonic stem cells: a novel source of dendritic cells for clinical applications. Int Immunopharmacol. 2005;5(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  40. Robertson NJ, Brook FA, Gardner RL, Cobbold SP, Waldmann H, Fairchild PJ. Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance. Proc Natl Acad Sci U S A. 2007;104(52):20920–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fairchild PJ. The challenge of immunogenicity in the quest for induced pluripotency. Nat Rev Immunol. 2010;10(12):868–75.

    Article  CAS  PubMed  Google Scholar 

  42. Boyd AS, Fairchild PJ. Approaches for immunological tolerance induction to stem cell-derived cell replacement therapies. Expert Rev Clin Immunol. 2010;6(3):435–48.

    Article  PubMed  Google Scholar 

  43. Nakatsuji N, Nakajima F, Tokunaga K. HLA-haplotype banking and iPS cells. Nat Biotechnol. 2008;26(7):739–40.

    Article  CAS  PubMed  Google Scholar 

  44. Zimmermann A, Preynat-Seauve O, Tiercy JM, Krause KH, Villard J. Haplotype-based banking of human pluripotent stem cells for transplantation: potential and limitations. Stem Cells Dev. 2012;21(13):2364–73.

    Article  CAS  PubMed  Google Scholar 

  45. Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell. 2012;11(2):147–52.

    Article  CAS  PubMed  Google Scholar 

  46. Turner M, Leslie S, Martin NG, et al. Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell. 2013;13(4):382–4.

    Article  CAS  PubMed  Google Scholar 

  47. Tena A, Sachs DH. Stem cells: immunology and immunomodulation. Dev Ophthalmol. 2014;53:122–32.

    Article  PubMed  Google Scholar 

  48. Vincenti F, Blancho G, Durrbach A, et al. Five-year safety and efficacy of belatacept in renal transplantation. J Am Soc Nephrol. 2010;21(9):1587–96.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Webber A, Hirose R, Vincenti F. Novel strategies in immunosuppression: issues in perspective. Transplantation. 2011;91(10):1057–64.

    Article  CAS  PubMed  Google Scholar 

  50. Murphy SP, Porrett PM, Turka LA. Innate immunity in transplant tolerance and rejection. Immunol Rev. 2011;241(1):39–48.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang X, Bok D. Transplantation of retinal pigment epithelial cells and immune response in the subretinal space. Invest Ophthalmol Vis Sci. 1998;39(6):1021–7.

    CAS  PubMed  Google Scholar 

  52. Zarbin MA, Casaroli-Marano RP, Rosenfeld PJ. Age-related macular degeneration: clinical findings, histopathology, imaging techniques. In: Casaroli-Marano RP, Zarbin MA, editors. Cell-based therapy for retinal degenerative disease. Basel: Karger Medical and Scientific Publishers; 2014. p. 1–32.

    Google Scholar 

  53. Menghini M, Duncan JL. Diagnosis and complementary examinations. Dev Ophthalmol. 2014;53:53–69.

    Article  PubMed  Google Scholar 

  54. Scoles D, Flatter JA, Cooper RF, et al. Assessing photoreceptor structure associated with ellipsoid zone disruptions visualized with optical coherence tomography. Retina. 2016;36(1):91–103.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Talcott KE, Ratnam K, Sundquist SM, et al. Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest Ophthalmol Vis Sci. 2011;52(5):2219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Roorda A, Zhang Y, Duncan JL. High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease. Invest Ophthalmol Vis Sci. 2007;48(5):2297–303.

    Article  PubMed  Google Scholar 

  57. Gao SS, Jia Y, Zhang M, et al. Optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT27–36.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schwartz DM, Fingler J, Kim DY, et al. Phase-variance optical coherence tomography. Ophthalmology. 2014;121:180–7.

    Article  PubMed  Google Scholar 

  59. Kim DY, Fingler J, Zawadzki RJ, et al. Optical imaging of the chorioretinal vasculature in the living human eye. Proc Natl Acad Sci U S A. 2013;110(35):14354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pearson RA, Barber AC, Rizzi M, et al. Restoration of vision after transplantation of photoreceptors. Nature. 2012;485(7396):99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ramsden CM, Powner MB, Carr AJ, Smart MJ, da Cruz L, Coffey PJ. Neural retinal regeneration with pluripotent stem cells. Dev Ophthalmol. 2014;53:97–110.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by the New Jersey Lions Eye Research Foundation, The Joseph J. and Marguerite DiSepio Research Fund, The Eng Family Fund for Excellence in Ophthalmology, and Robert and Patty Wigder.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zarbin, M.A. (2019). Advantages of the Eye as a Target Organ for Cell-Based Therapy in the Central Nervous System. In: Zarbin, M., Singh, M., Casaroli-Marano, R. (eds) Cell-Based Therapy for Degenerative Retinal Disease . Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-030-05222-5_1

Download citation

Publish with us

Policies and ethics