Skip to main content

Fast Statistical Modelling of Temperature Variation on 28 nm FDSOI Technology

  • Conference paper
  • First Online:
Broadband Communications, Networks, and Systems (BROADNETS 2018)

Abstract

It is well known that the 28 nm fully depleted Silicon-On Insulator (FDSOI) node has a temperature effect due to the inherent pyroelectric and piezoelectric properties. In this paper, we introduce a spatial interpolation Lookup table (LUT) model considering temperature dependence of nanometer CMOS transistors. The novel methodology is used to build the bias current and capacitance LUTs for MOS transistor circuits under extensive variety of temperature values, evaluated under transient analysis. This innovative LUTs model significantly reduce the simulation runtime with sufficient accuracy using adaptive multivariate precomputed Barycentric relational interpolation for the appraisal temperature effects of 28 nm FDSOI node.

A transient analysis benchmark is employed in order to verify and validate the proposed models according to the well-known simulation models (i.e. the 28 nm FDSOI model and traditional spatial Lagrange model). The proposed model can significantly reduce the size of lookup table, thereby reducing the computational cost. Furthermore, the model outperform the 28 nm FDSOI compact physical model and the traditional spatial Lagrange model due to the reduced simulation runtime by up to eight orders of magnitude considering the temperature effect in 28 nm FDSOI innovation. Moreover, the proposed novel LUT based approaches are able to attain high precision with much reduced computational cost.

This work was supported by the H2020-ECSEL-2017-1-783127.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Planes, N., et al.: 28nm FDSOI technology platform for high-speed low-voltage digital applications. In: VLSI Technology (VLSIT), 2012 Symposium, pp. 133–134. IEEE, Honolulu, HI (2012)

    Google Scholar 

  2. Salvatore, G.A., Lattanzio, L., Bouvet, D., Ionescu, A.M.: Modeling the temperature dependence of Fe-FET static characteristics based on Landau’s theory. IEEE Trans. Electron Devices 58(9), 3162–3169 (2011)

    Article  Google Scholar 

  3. Kumar, S.V., Kim, C.H., Sapatnekar, S.S.: Body bias voltage computations for process and temperature compensation. IEEE Trans. Very Large Scale Integr. VLSI Syst. 16(3), 249–262 (2008)

    Article  Google Scholar 

  4. Filanovsky, I.M., Allam, A.: Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Trans. Circ. Syst. I Fundam. Theor. Appl. 48(7), 876–884 (2001)

    Article  Google Scholar 

  5. Ku, J.C., Ismail, Y.: On the scaling of temperature-dependent effects. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 26(10), 1882–1888 (2007)

    Article  Google Scholar 

  6. Gildenblat, G., et al.: PSP: an advanced surface-potential-based MOSFET model for circuit simulation. IEEE Trans. Electron Devices 53(9), 1979–1993 (2006)

    Article  Google Scholar 

  7. Thakker, R.A., Sathe, C., Baghini, M.S., Patil, M.B.: A table-based approach to study the impact of process variations on FinFET circuit performance. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 29(4), 627–631 (2010)

    Article  Google Scholar 

  8. Bourenkov, V., McCarthy, K.G., Mathewson, A.: MOS table models for circuit simulation. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 24(3), 352–362 (2005)

    Article  Google Scholar 

  9. Li, X., Yang, F., Wu, D., Zhou, Z., Zeng, X.: MOS table models for fast and accurate simulation of analog and mixed-signal circuits using efficient oscillation-diminishing interpolations. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 34(9), 1481–1494 (2015)

    Article  Google Scholar 

  10. Graham, M.G., Paulos, J.J.: Interpolation of MOSFET table data in width, length, and temperature. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 12(12), 1880–1884 (1993)

    Article  Google Scholar 

  11. Rofougaran, A., Abidi, A.A.: A table lookup FET model for accurate analog circuit simulation. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 12(2), 324–335 (1993)

    Article  Google Scholar 

  12. Schrom, G., Stach, A., Selberherr, A.S.: An interpolation based MOSFET model for low-voltage applications. Microelectron. J. 29(8), 529–534 (1998)

    Article  Google Scholar 

  13. Touhidur, R.: Physics Based Modeling of Multiple Gate Transistors on Silicon on-Insulator (SOI). The University of Tennessee, Knoxville (2009)

    Google Scholar 

  14. Abdalla, A.M., Elfergani, I.T.E., Rodriguez, J.: Modelling the temperature dependence of 28 nm Fully Depleted Silicon-On Insulator (FDSOI) static characteristics based on parallel computing approach. In: 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC), pp. 1–2. IEEE, Toulouse (2016)

    Google Scholar 

  15. Hormann, K., Schaefer, S.: Pyramid algorithms for barycentric rational interpolation. Comput. Aided Geom. D. 42, 1–6 (2016)

    Article  MathSciNet  Google Scholar 

  16. Berrut, J.P., Trefethen, L.N.: Barycentric lagrange interpolation. SIAM Rev. 46, 501–517 (2004)

    Article  MathSciNet  Google Scholar 

  17. Zhao, A., Wang, B.: Lebesgue constant minimizing bivariate barycentric rational interpolation. Int. J. App. Maths Info. Sci 8(1), 187–192 (2014)

    Article  MathSciNet  Google Scholar 

  18. Adams, B.M., et al.: DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, Technical report SAND2014-4253, Sandia National Laboratory (2014)

    Google Scholar 

  19. Goldman, R.: Pyramid algorithms A dynamic programming approach to curves and surfaces for Geometric Modeling. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  20. Kilchytska, V., Makovejev, S., Md Arshad, M.K., Raskin, J.-P., Flandre, D.: Perspectives of UTBB FD SOI MOSFETs for analog and RF applications. In: Nazarov, A., Balestra, F., Kilchytska, V., Flandre, D. (eds.) Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting. EM, pp. 27–46. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08804-4_2

    Chapter  Google Scholar 

  21. Snider, A.D.: Charge conservation and the transcapacitance element: an exposition. IEEE Trans. Educ. 38(4), 376–379 (1995)

    Article  Google Scholar 

  22. Lai, S., Fager, C., Kuylenstierna, D., Angelov, A.I.: LDMOS modeling. IEEE Microwave Mag. 14(1), 108–116 (2013)

    Article  Google Scholar 

  23. Jang, J.: Small-signal modeling of RF CMOS. Maters thesis, Dept. Elect. Eng; Stanford Univ.; Stanford, CA, USA (2004)

    Google Scholar 

  24. Chen, M., Zhao, W., Liu, F., Cao, Y.: Fast statistical circuit analysis with finite-point based transistor model. In: 2007 Design, Automation Test in Europe Conference Exhibition, Nice, pp. 1–6 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelgader M. Abdalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdalla, A.M., Alimi, I.A., González, M., Elfergani, I., Rodriguez, J. (2019). Fast Statistical Modelling of Temperature Variation on 28 nm FDSOI Technology. In: Sucasas, V., Mantas, G., Althunibat, S. (eds) Broadband Communications, Networks, and Systems. BROADNETS 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-030-05195-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05195-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05194-5

  • Online ISBN: 978-3-030-05195-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics