Skip to main content
  • 936 Accesses

Abstract

Herbivorous moth species are important models in studies of olfaction, starting with the pioneering work on the silk moth. Their survival directly depends on innate and learned olfactory cues, both insect produced pheromones and plant odors, for feeding and reproduction (mating and oviposition). Therefore, gaining knowledge about the crucial olfactory system in moth, also contribute to strategies in species-specific pest management. Extensive studies over the last decades have given good insight into the pheromone system. The plant odor sensory system, however, have been challenged by defining the biologically relevant odorants, which is an essential knowledge when aiming to understand complex olfactory coding mechanisms. Many studies have revealed selective plant odor sensory neurons in both female and male moth. The most convincing results demonstrating highly sensitive and narrowly tuned neurons, come from linking chemical analyses to electrophysiological recordings of single units, which has allowed classification of neurons into functional types according to the molecular receptive range, appearing with one primary odorant and a few other structurally similar and less potent secondary odorants. In heliothine moth, the different neuron types barely overlap in their receptive range, though some variation is seen in species of other genera. A comparative study among heliothine species has demonstrated the presence of neuron types with identical specificity, indicating an evolutionary conservation of receptor proteins. Conservation of co-located neuron types in particular sensilla, within and across species, implies the sensillum as a functional unit. According to “the molecular logic of the sense of smell”, it is hypothesized that each of the approximately 70 glomeruli in the moth antennal lobe devoted to plant odor information receive projections from olfactory sensory neurons of the same functional type. It is hypothesized that the response profiles of antennal lobe projection neurons (uni- or multi-glomerular), reflect the molecular receptive ranges of the sensory neurons innervating the particular glomeruli, i.e. responding specifically to the primary odorant of these neurons. Furthermore, the antennal lobe network with local interneurons (predominantly inhibitory) and modulatory centrifugal neurons enhance complexity and flexibility of odor processing. Projection neurons convey antennal lobe output to higher olfactory areas in the protocerebrum mainly via three tracts terminating in the calyces of the mushroom bodies, the lateral horn and two less pronounced areas in the superior protocerebrum and around the peduncle. Plant odorant and pheromone information conveyed in parallel pathways into the antennal lobe, are kept separated in the calyces of the mushroom bodies (involved in learning), and the lateral protocerebrum (an integration area) indicating a functional organization according to behavioral relevance. Neuronal plasticity makes moths able to adjust behavior and adapt to a shifting environment. Altogether, the olfactory sensory system provides the moth with the ability to recognize a variety of plant odorants with high precision. However, the neuronal mechanism explaining how odorants finally generate/release the innate and learned behaviors of attraction, repellency, feeding and oviposition has yet to be resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allmann S, Baldwin IT (2010) Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science 329:1075–1078

    Article  CAS  PubMed  Google Scholar 

  • Anderson P, Hansson BS, Lofqvist J (1995) Plant-odour-specific receptor neurones on the antennae of female and male Spodoptera littoralis. Physiol Entomol 20:189–198

    Article  CAS  Google Scholar 

  • Anton S, Homberg U (1999) Antennal lobe structure. In: Hansson BS (ed) Insect olfaction. Springer, Berlin, pp 97–124

    Chapter  Google Scholar 

  • Baker TC, Fadamiro HY, Cosse AA (1998) Moth uses fine tuning for odour resolution. Nature 393:530–530

    Article  CAS  Google Scholar 

  • Balkenius A, Dacke M (2010) Flight behaviour of the hawkmoth Manduca sexta towards unimodal and multimodal targets. J Exp Biol 213:3741–3747

    Article  PubMed  Google Scholar 

  • Balkenius A, Dacke M (2013) Learning of multi-modal stimuli in hawkmoths. PLoS One 8:e71137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrozo RB, Gadenne C, Anton S (2010) Switching attraction to inhibition: mating-induced reversed role of sex pheromone in an insect. J Exp Biol 213:2933–2939

    Article  PubMed  Google Scholar 

  • Barrozo RB, Jarriault D, Deisig N, Gemeno C, Monsempes C, Lucas P, Gadenne C, Anton S (2011) Mating-induced differential coding of plant odour and sex pheromone in a male moth. Eur J Neurosci 33:1841–1850

    Article  PubMed  Google Scholar 

  • Berg BG, Galizia G, Brandt R, Mustaparta H (2002) Digital atlases of the antennal lobe in two species of tobacco budworm moths, the oriental (male) and the American Heliothis virescens (male and females). J Comp Neurol 446:123–134

    Article  PubMed  Google Scholar 

  • Berg BG, Almaas TJ, Bjaalie JG, Mustaparta H (2005) Projections of male-specific receptor neurons in the antennal lobe of the oriental tobacco budworm moth, Helicoverpa assulta: a unique glomerular organization among related species. J Comp Neurol 486:209–220

    Article  PubMed  Google Scholar 

  • Berg BG, Schachtner J, Homberg U (2009) γ-Aminobutyric acid immunostaining in the antennal lobe of the moth Heliothis virescens and its colocalization with neuropeptides. Cell Tiss Res 335:593–605

    Article  CAS  Google Scholar 

  • Berg BG, Zhao XC, Wang G (2014) Processing of pheromone information in related species of Heliothine moths. Insects 5:742–761

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernays EA, Chapman RF (2007) Host-plant selection by phytophagous insects, vol 2. Springer Science & Business Media, p 312

    Google Scholar 

  • Bichão H, Borg-Karlson AK, Araújo J, Mustaparta H (2005a) Five types of olfactory receptor neurons in the Strawberry bossom weevil Anthonomus rubi: selective responses to inducible host-plant volatiles. Chem Senses 30:153–170

    Article  CAS  PubMed  Google Scholar 

  • Bichão H, Borg-Karlson AK, Wibe A, Araújo J, Mustaparta H (2005b) Molecular receptive ranges of olfactory receptor neurones responding selectively to terpenoids, aliphatic green leaf volatiles and aromatic compounds, in the strawberry blossom weevil Anthonomus rubi. Chemoecology 15:211–226

    Article  CAS  Google Scholar 

  • Binyameen M, Anderson P, Ignell R, Birgersson G, Razaq M, Shad SA, Hansson BS, Schlyter F (2014) Identification of plant semiochemicals and characterization of new olfactory sensory neuron types in a polyphagous pest moth, Spodoptera littoralis. Chem Senses 39:719

    Article  CAS  PubMed  Google Scholar 

  • Bisch-Knaden S, Carlsson MA, Sugimoto Y, Schubert M, Mißbach C, Sachse S, Hansson BS (2012) Olfactory coding in five moth species from two families. J Exp Biol 215:1542–1551

    Article  PubMed  Google Scholar 

  • Boeckh J, Tolbert L (1993) Synaptic organization and development of the antennal lobe in insects. Microsc Res Tech 24:260–280

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJA (2015) Interplay between insects and plants: dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. J Exp Bot 66:455–465

    Article  CAS  PubMed  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  CAS  PubMed  Google Scholar 

  • Cao S, Liu Y, Guo M, Wang G (2016) A conserved odorant receptor tuned to floral volatiles in three heliothinae species. PLoS One 11:e0155029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho S, Mitchell A, Mitter C, Regier J, Matthews M, Robertson R (2008) Molecular phylogenetics of heliothine moths (Lepidoptera: Noctuidae: Heliothinae), with comments on the evolution of host range and pest status. Syst Entomol 33:581–594

    Article  Google Scholar 

  • Christensen TA, Waldrop B, Harrow I, Hildebrand J (1993) Local interneurons and information processing in the olfactory glomeruli of the moth Manduca sexta. J Comp Physiol A 173:385–399

    Article  CAS  PubMed  Google Scholar 

  • Christensen TA, Waldrop BR, Hildebrand JG (1998) GABAergic mechanisms that shape the temporal response to odors in moth olfactory projection neurons. Ann N Y Acad Sci 855:475–481

    Article  CAS  PubMed  Google Scholar 

  • Clifford MR, Rifefell JA (2013) Mixture and odorant processing in the olfactory systems of insects: a comparative perspective. J Comp Physiol A 199:911–928

    Article  CAS  Google Scholar 

  • Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–338

    Article  CAS  PubMed  Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2006) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375

    Article  CAS  Google Scholar 

  • Corcoran AJ, Conner WE (2014) Bats jamming bats: food competition through sonar interference. Science 346:745–747

    Article  CAS  PubMed  Google Scholar 

  • Cui W, Wang B, Guo M, Liu Y, Jacquin-Joly E, Yana S, Wang G (2018) A receptor-neurone correlates for the detection of attractive plant volatiles in Helicoverpa assulta (Lepidoptera: Noctuidae). Insect Biochem Mol Biol 97:31–39

    Google Scholar 

  • Cunningham JP, Zalucki MP (2014) Understanding heliothine (Lepidoptera: Heliothinae) pests: what is a host plant? J Econ Entomol 107:881–896

    Article  PubMed  Google Scholar 

  • Cunningham JP, Jallow MFA, Wright DJ, Zalucki MP (1998) Learning in host selection in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Anim Behav 55:227–234

    Article  CAS  PubMed  Google Scholar 

  • Daly KC, Christensen TA, Lei H, Smith BH, Hildebrand JG (2004) Learning modulates the ensemble representations for odors in primary olfactory networks. Proc Natl Acad Sci U S A 101:10476–10481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Boer JG, Posthumus MA, Dicke M (2004) Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J Chem Ecol 30:2215–2230

    Article  PubMed  Google Scholar 

  • Dong F, Fu X, Watanabe N, Su X, Yang Z (2016) Recent advances in the emission and functions of plant vegetative volatiles. Molecules 21:124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Galizia CG, Sachse S, Mustaparta H (2000) Calcium responses to pheromones and plant odours in the antennal lobe of the male and female moth Heliothis virescens. J Comp Physiol A 186:1049–1063

    Article  CAS  PubMed  Google Scholar 

  • Galizia CG and Rossler W (2010) Parallel olfactory systems in insects: anatomy and function. Annu. Rev. Entomol. 55, 399–420

    Google Scholar 

  • Gao Q, Chess A (1999) Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60:31–39

    Article  CAS  PubMed  Google Scholar 

  • Ghaninia M, Olsson SB, Hansson BS (2014) Physiological organization and topographic mapping of the antennal olfactory sensory neurons in female hawkmoths, Manduca sexta. Chem Senses 39:655–671

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez F, Bengtsson JM, Walker WB, Sousa MFR, Cattaneo AM, Montagne N, de Fouchier A, Anfora GF, Jacquin-Joly E, Witzgall P, Ignell R, Bengtsson M (2015) A conserved odorant receptor detects the same 1-indanone analogs in a tortricid and a noctuid moth. Front Ecol Evol 3:131

    Google Scholar 

  • Gouinguené S, Pickett JA, Wadhams LJ, Birkett MA, Turlings TCJ (2005) Antennal electrophysiological responses of three parasitic wasps to caterpillar-induced volatiles from maize (Zea mays mays), cotton (Gossypium herbaceum), and cowpea (Vigna unguiculata). J Chem Ecol 31:1023–1038

    Article  CAS  PubMed  Google Scholar 

  • Goustas AP (2016) Characterising responses to mixtures of pheromones and plant odorants in the moth antennal lobe through clacium imaging. Master Thesis, Neuroscience Unit, NTNU, Trondheim, Norway

    Google Scholar 

  • Gregg PC, Del Socorro AP (2005) Attractants for moths. US Patent 20,050,042,316

    Google Scholar 

  • Gregg PC, Del Socorro AP, Henderson GS (2010) Development of a synthetic plant volatile-based attracticide for female noctuid moths. II. Bioassays of synthetic plant volatiles as attractants for the adults of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Aust J Entomol 49:21–30

    Article  Google Scholar 

  • Groux R, Hilfiker O, Gouhier-Darimont C, Peñaflor MFGV, Erb M, Reymond P (2014) Role of methyl salicylate on oviposition deterrence in Arabidopsis thaliana. J Chem Ecol 40:754–759

    Article  CAS  PubMed  Google Scholar 

  • Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366:59

    Article  CAS  PubMed  Google Scholar 

  • Hansson BS, Anton S (2000) Function and morphology of the antennal lobe: new developments. Annu Rev Entomol 45:203–231

    Article  CAS  PubMed  Google Scholar 

  • Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846

    Article  CAS  PubMed  Google Scholar 

  • Hatano E, Saveer AM, Borrero-Echeverry F, Strauch M, Zakir A, Bengtsson M, Ignell R, Anderson P, Becher PG, Witzgall P, Dekker T (2015) A herbivore-induced plant volatile interferes with host plant and mate location in moths through suppression of olfactory signalling pathways. BMC Biol 13:1–15

    Article  CAS  Google Scholar 

  • Heisenberg M (1998) What do the mushroom bodies do for the insect brain? An introduction. Learn Mem 5:1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilfiker O, Groux R, Bruessow F, Kiefer K, Zeier J, Reymond P (2014) Insect eggs induce a systemic acquired resistance in Arabidopsis. Plant J 80:1085–1094

    Article  CAS  PubMed  Google Scholar 

  • Hill SR, Majeed S, Ignell R (2015) Molecular basis for odorant receptor tuning: a short C-terminal sequence is necessary and sufficient for selectivity of mosquito Or8. Insect Mol Biol 24:491–501

    Article  CAS  PubMed  Google Scholar 

  • Holopainen JK, Blande JD (2013) Where do herbivore-induced plant volatiles go? Front Plant Sci 4:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Homberg U, Montague RA, Hildebrand JG (1988) Anatomy of antenno-cerebral pathways in the brain of the sphinx moth Manduca sexta. Cell Tissue Res 254:255–281

    Article  CAS  PubMed  Google Scholar 

  • Hopf T, Morinaga S, Ihara S, Touhara K, Marks D, Benton R (2015) Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors. Nat Commun 6:6077

    Article  CAS  PubMed  Google Scholar 

  • Høydal ØA (2012) Central processing of plant odor mixtures and single odorants in the moth Heliothis virescens. Master thesis, Neuroscience Unit, NTNU, Trondheim, Norway

    Google Scholar 

  • Ian E, Zhao XC, Lande A, Berg BG (2016a) Individual neurons confined to distinct antennal-lobe tracts in the heliothine moth: morphological characteristics and global projection patterns. Front Neuroanat 10:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Ian E, Berg A, Lillevoll SC, Berg BG (2016b) Antennal-lobe tracts in the noctuid moth, Heliothis virescens: new anatomical findings. Cell Tissue Res 366:23–35

    Article  PubMed  Google Scholar 

  • Ian E, Kirkerud NH, Galizia CG, Berg BG (2017) Coincidence of pheromone and plant odor leads to sensory plasticity in the heliothine olfactory system. PLoS One 12:e0175513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito K, Shinomiya K, Ito M, Armstrong J, Boyan G, Hartenstein V, Harzsch S, Heisenberg M, Homberg U, Jenett A, Keshishian H, Restifo LL, Rössler W, Simpson JH, Strausfeld NJ, Strauss R, Vosshall LB (2014) A systematic nomenclature for the insect brain. Neuron 81:755–765

    Article  CAS  PubMed  Google Scholar 

  • Jönsson M, Anderson P (1999) Electrophysiological response to herbivore-induced host plant volatiles in the moth Spodoptera littoralis. Physiol Entomol 24:377–385

    Article  Google Scholar 

  • Jørgensen K, Stranden M, Sandoz J-C, Menzel R, Mustaparta H (2007) Effects of two bitter substances on olfactory conditioning in the moth Heliothis virescens. J Exp Biol 210:2563–2573

    Article  CAS  PubMed  Google Scholar 

  • Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11:188–200

    Article  CAS  PubMed  Google Scholar 

  • Kjos IC (2016) Mapping neural networks linked to a higher olfactory center in a model brain. Master thesis, NTNU Trondheim, Norway

    Google Scholar 

  • Kloppenburg P, Mercer AR (2008) Serotonin modulation of moth central olfactory neurons. Annu Rev Entomol 53:179–190

    Article  CAS  PubMed  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Koenig C, Hirsh A, Bucks S, Klinner C, Vogel H, Shukla A, Mansfield JH, Morton B, Hansson BS, Grosse-Wilde E (2015) A reference gene set for chemosensory receptor genes of Manduca sexta. Insect Biochem Mol Biol 66:51–63

    Article  CAS  PubMed  Google Scholar 

  • Kuebler LS, Schubert M, Kárpáti Z, Hansson BS, Olsson SB (2012) Antennal lobe processing correlates to moth olfactory behavior. J Neurosci 32:5772–5782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvello P, Jørgensen K, Mustaparta H (2010) Central gustatory neurons integrate taste quality information from four appendages in the moth Heliothis virescens. J Neurophysiol 103:2965–2981

    Article  PubMed  Google Scholar 

  • Lande A (2016) Morphological and physiological characterization of olfactory and multimodal neurons in the lateral horn of the Heliothinae moth. Master thesis, Neuroscience Unit, NTNU, Trondheim, Norway

    Google Scholar 

  • Leary GP, Allen JE, Bunger PL, Luginbill JB, Linn CE, Macallister IE, Kavanaugh MP, Wanner KW (2012) Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species. Proc Natl Acad Sci U S A 109:14081–14086

    Article  PubMed  PubMed Central  Google Scholar 

  • Lei H, Christensen TA, Hildebrand JG (2002) Local inhibition modulates odor-evoked synchronization of glomerulus-specific output neurons. Nat Neurosci 5:557–565

    Article  CAS  PubMed  Google Scholar 

  • Li S, Picimbon JF, Ji SD, Kan YC, Qiao CL, Zhou JJ, Pelosi P (2008) Multiple functions of an odorant-binding protein in the mosquito Aedes aegypti. Biochem Biophys Res Commun 372:464–468

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Scheirs J, Heckel DG (2012) Trade-offs of host use between generalist and specialist Helicoverpa sibling species: adult oviposition and larval performance. Oecologia 168:459–469

    Article  PubMed  Google Scholar 

  • Liu C, Liu Y, Guo M, Cao D, Dong S, Wang G (2014) Narrow tuning of an odorant receptor to plant volatiles in Spodoptera exigua (Hübner). Insect Mol Biol 23:487–496

    Article  CAS  PubMed  Google Scholar 

  • Løfaldli BB, Kvello P, Mustaparta H (2010) Integration of the antennal lobe glomeruli and three projection neurons in the standard brain atlas of the moth Heliothis virescens. Front Syst Neurosci 4:6

    Google Scholar 

  • Løfaldli BB, Kvello P, Kirkerud N, Mustaparta H (2012) Activity in neurons of a putative protocerebral circuit representing information about a 10 component plant odor blend in Heliothis virescens. Front Syst Neurosci 6:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166

    Article  CAS  PubMed  Google Scholar 

  • Martin D, Tholl D, Gershenzon J, Bohlmann J (2002) Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol 129:1003–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCallum EJ, Cunningham JP, Lücker J, Zalucki MP, De Voss JJ, Botella JR (2011) Increased plant volatile production affects oviposition, but not larval development, in the moth Helicoverpa armigera. J Exp Biol 214:3672–3677

    Article  CAS  PubMed  Google Scholar 

  • Menzel R (2012) The honeybee as a model for understanding the basis of cognition. Nat Rev Neurosci 13:758–768

    Article  CAS  PubMed  Google Scholar 

  • Menzel R (2014) The insect mushroom body, an experience-dependent recoding device. J Physiol Paris 108:84–95

    Article  PubMed  Google Scholar 

  • Mithöfer A, Boland W (2016) Do you speak chemistry? EMBO Rep 17:626–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MIT Technology Review (2018) Rewriting life, “why even a moth’s brain is smarter than an AI”

    Google Scholar 

  • Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580

    Article  CAS  PubMed  Google Scholar 

  • Mozuraitis R, Stranden M, Ramirez MI, Borg-Karlson AK, Mustaparta H (2002) (−)-germacrene D increases attraction and oviposition by the tobacco budworm moth Heliothis virescens. Chem Senses 27:505–509

    Google Scholar 

  • Muhlemann JK, Klempien A, Dudareva N (2014) Floral volatiles: from biosynthesis to function. Plant Cell Environ 37:1936–1949

    Article  PubMed  Google Scholar 

  • Mustaparta H (1990) Chemical information processing in the olfactory system of insects. Physiol Rev 70:199–245

    Article  CAS  PubMed  Google Scholar 

  • Mustaparta H (1996) Central mechanisms of pheromone information processing. Chem Senses 21:269–275

    Article  CAS  PubMed  Google Scholar 

  • Mustaparta H, Stranden M (2005) Chapter Ten-Olfaction and learning in moths and weevils living on angiosperm and gymnosperm hosts. Recent Adv Phytochem 39:269–292

    Article  CAS  Google Scholar 

  • Nakano R, Skals N, Takanashi T, Surlykke A, Koike T, Yoshida K, Maruyama H, Tatsuki S, Ishikawa Y (2008) Moths produce extremely quiet ultrasonic courtship songs by rubbing specialized scales. Proc Natl Acad Sci U S A 105:11812–11817

    Article  PubMed  PubMed Central  Google Scholar 

  • Namiki S, Kanzaki R (2011) Heterogeneity in dendritic morphology of moth antennal lobe projection neurons. J Comp Neurol 519:3367–3386

    Article  PubMed  Google Scholar 

  • Namiki S, Iwabuchi S, Kanzaki R (2008) Representation of a mixture of pheromone and host plant odor by antennal lobe projection neurons of the silkmoth Bombyx mori. J Comp Physiol A 194:501–505

    Article  CAS  Google Scholar 

  • Namiki S, Iwabuchi S, Kono PP, Kanzaki R (2014) Information flow through neural circuits for pheromone orientation. Nat Commun 5:5919

    Article  CAS  PubMed  Google Scholar 

  • Ochieng SA, Anderson P, Hansson BS (1995) Antennal lobe projection patterns of olfactory receptor neurons involved in sex pheromone detection in Spodoptera littoralis (Lepidoptera: Noctuidae). Tissue Cell 27:221–232

    Article  CAS  PubMed  Google Scholar 

  • Parachnowitsch AL, Burdon RCF, Raguso RA, Kessler A (2013) Natural selection on floral volatile production in Penstemon digitalis: highlighting the role of linalool. Plant Sig Behav 8:137–140

    Article  CAS  Google Scholar 

  • Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Park KC, Withers TM, Suckling DM (2015) Identification of olfactory receptor neurons in Uraba lugens (Lepidoptera: Nolidae) and its implications for host range. J Insect Physiol 78:33–46

    Article  CAS  PubMed  Google Scholar 

  • Pyke B, Rice M, Sabine B, Zalucki M (1987) The push-pull strategy-behavioural control of Heliothis. Aust Cotton Grow 9:7–9

    Google Scholar 

  • Raguso RA, Pichersky E (1999) A day in the life of a linalool molecule: chemical communication in a plant-pollinator system. Part 1: linalool biosynthesis in flowering plants. Plant Species Biol 14:95–120

    Article  Google Scholar 

  • Reisenman CE (2004) Enantioselectivity of projection neurons innervating identified olfactory glomeruli. J Neurosci 24:2602–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reisenman CE, Christensen TA, Hildebrand JG (2005) Chemosensory selectivity of output neurons innervating an identified, sexually isomorphic olfactory glomerulus. J Neurosci 25:8017–8026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reisenman CE, Riffell JA, Bernays EA and Hildebrand JG (2010) Antagonistic effects of floral scent in an insect–plant interaction. Proc R Soc B 277:371–2379

    Google Scholar 

  • Reisenman C, Dacks A, Hildebrand J (2011) Local interneuron diversity in the primary olfactory center of the moth Manduca sexta. J Comp Physiol 197:653–665

    Article  Google Scholar 

  • Riffell JA, Hildebrand JG (2016) Adaptive processing in the insect olfactory system. In: von der Emde G, Warrant E (eds) The ecology of animal senses: matched filters for economical sensing. Springer International Publishing, Cham, pp 3–24

    Chapter  Google Scholar 

  • Riffell JA, Lei H, Christensen TA, Hildebrand JG (2009) Characterization and coding of behaviorally significant odor mixtures. Curr Biol 19:335–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riffell JA, Lei H, Abrell L, Hildebrand JG (2013) Neural basis of a pollinator’s buffet: olfactory specialization and learning in Manduca sexta. Science 339:200–204

    Article  CAS  PubMed  Google Scholar 

  • Ro H, Muller D, Mustaparta H (2007) Anatomical organization of antennal lobe projection neurons in the moth Heliothis virescens. J Comp Neurol 500:658–675

    Article  PubMed  Google Scholar 

  • Rojas JC, Virgen A, Cruz L (2009) Chemical and tactile cues influencing oviposition of a generalist moth, Spodoptera frugiperda (Lepidoptera: Noctuidae). Environ Entomol 32:1386–1392

    Article  Google Scholar 

  • Rospars JP, Lansky P, Chaput M, Duchamp-Viret P (2008) Competitive and noncompetitive odorant interactions in the early neural coding of odorant mixtures. J Neurosci 28:2659–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Røstelien T, Borg-Karlson AK, Faldt J, Jacobsson U, Mustaparta H (2000a) The plant sesquiterpene germacrene D specifically activates a major type of antennal receptor neuron of the tobacco budworm moth Heliothis virescens. Chem Senses 25:141–148

    Google Scholar 

  • Røstelien T, Borg-Karlson A-K, Mustaparta H (2000b) Selective receptor neurone responses to E-beta-ocimene, beta-myrcene, E,E-alpha-farnesene and homo-farnesene in the moth Heliothis virescens, identified by gas chromatography linked to electrophysiology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 186:833–847

    Google Scholar 

  • Røstelien T, Stranden M, Borg-Karlson AK, Mustaparta H (2005) Olfactory receptor neurons in two heliothine moth species responding selectively to aliphatic green leaf volatiles, aromatic compounds, monoterpenes and sesquiterpenes of plant origin. Chem Senses 30:443–461

    Google Scholar 

  • Rouyar A, Party V, Prešern J, Blejec A, Renou M (2011) A general odorant background affects the coding of pheromone stimulus intermittency in specialist olfactory receptor neurones. PLoS One 6:e26443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saveer AM, Kromann SH, Birgersson G, Bengtsson M, Lindblom T, Balkenius A, Hansson BS, Witzgall P, Becher PG, Ignell R (2012) Floral to green: mating switches moth olfactory coding and preference. Proc R Soc Lond Ser B Biol Sci 279:2314–2322

    Article  Google Scholar 

  • Schneider D (1969) Insect olfaction: deciphering system for chemical messages. Science 163:1031

    Article  CAS  PubMed  Google Scholar 

  • Schneider D, Steinbrecht RA (1968) Checklist of insect olfactory sensilla. Symp Zool Soc Lond 23:279–297

    Google Scholar 

  • Seki Y, Kanzaki R (2008) Comprehensive morphological identification and GABA immunocytochemistry of antennal lobe local interneurons in Bombyx mori. J Comp Neurol 506:93–107

    Article  CAS  PubMed  Google Scholar 

  • Shields VDC, Hildebrand JG (2001) Responses of a population of antennal olfactory receptor cells in the female moth Manduca sext a to plant-associated volatile organic compounds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 186:1135–1151

    Article  CAS  Google Scholar 

  • Singh R, Koul O, Rup P (2010) Effect of some essential oil compounds on the oviposition and feeding behavior of the Asian armyworm, Spodoptera litura F. (Lepidoptera: Noctuidae). Biopest Int 6:52–66

    Google Scholar 

  • Silverstein RM, Rodin JO (1966) Insect pheromone collection with absorption columns. I. Studies on model organic compounds. J Econ Entomol 59:1152–1154

    Google Scholar 

  • Skals N, Anderson P, Kanneworff M, Löfstedt C, Surlikke A (2005) Her odours make him deaf: crossmodal modulation of olfaction and hearing in a male moth. J Exp Biol 208:595–601

    Article  PubMed  Google Scholar 

  • Skiri HT, Galizia CG, Mustaparta H (2004) Representation of primary plant odorants in the antennal lobe of the moth Heliothis virescens using calcium imaging. Chem Senses 29:253–267

    Article  CAS  PubMed  Google Scholar 

  • Skiri HT, Stranden M, Sandoz J-C, Menzel R, Mustaparta H (2005) Associative learning of plant odorants activating the same or different receptor neurones in the moth Heliothis virescens. J Exp Biol 208:787–796

    Article  CAS  PubMed  Google Scholar 

  • Smadja CM, Canbäck B, Vitalis R, Gautier M, Ferrari J, Zhou JJ, Butlin RK (2012) Large-scale candidate gene scan reveals the role of chemoreceptor genes in host plant specialization and speciation in the pea aphid. Evolution 66:2723–2738

    Article  PubMed  Google Scholar 

  • Späthe A, Reinecke A, Olsson SB, Kesavan S, Knaden M, Hansson BS (2012) Plant species- and status-specific odorant blends guide oviposition choice in the moth Manduca sexta. Chem Senses 38:147–159

    Article  CAS  PubMed  Google Scholar 

  • Stengl M (2010) Pheromone transduction in moths. Front Cell Neurosci 4:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stranden M, Borg-Karlson AK, Mustaparta H (2002) Receptor neuron discrimination of the germacrene D enantiomers in the moth Helicoverpa armigera. Chem Senses 27:143–152

    Article  CAS  PubMed  Google Scholar 

  • Stranden M, Liblikas I, König W, Almaas T, Borg-Karlson AK, Mustaparta H (2003a) (−)-germacrene D receptor neurons in three species of heliothine moths: structure-activity relationships. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189:563–577

    Article  CAS  PubMed  Google Scholar 

  • Stranden M, Røstelien T, Liblikas I, Almaas TJ, Borg-Karlson AK, Mustaparta H (2003b) Receptor neurones in three heliothine moths responding to floral and inducible plant volatiles. Chemoecology 13:143–154

    Google Scholar 

  • Stranden M, Lofaldli B, Kvello P, Mustaparta H (2008) Integration of characterized olfactory interneurons into the standard brain atlas of the moth Heliothis virescens. Chem Senses 33:S80–S80

    Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain, vol 52. Springer, New York, pp 1096–1109

    Book  Google Scholar 

  • Sun XL, Wang GC, Gao Y, Chen ZM (2012) Screening and field evaluation of synthetic volatile blends attractive to adults of the tea weevil, Myllocerinus aurolineatus. Chemoecology 22:229–237

    Article  CAS  Google Scholar 

  • Sun XL, Wang GC, Gao Y, Zhang XZ, Xin ZJ, Chen ZM (2014) Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecific moths. J Chem Ecol 40:1080–1089

    Article  CAS  PubMed  Google Scholar 

  • Tholl D, Sohrabi R, Huh JH, Lee S (2011) The biochemistry of homoterpenes – common constituents of floral and herbivore-induced plant volatile bouquets. Phytochemistry 72:1635–1646

    Article  CAS  PubMed  Google Scholar 

  • Ulland S, Ian E, Borg-Karlson AK, Mustaparta H (2006) Discrimination between enantiomers of linalool by olfactory receptor neurons in the cabbage moth Mamestra brassicae (L.). Chem Senses 31:325–334

    Article  CAS  PubMed  Google Scholar 

  • Ulland S, Ian E, Mozuraitis R, Borg-Karlson AK, Meadow R, Mustaparta H (2008a) Methyl salicylate, identified as primary odorant of a specific receptor neuron type, inhibits oviposition by the moth Mamestra brassicae L. (Lepidoptera, Noctuidae). Chem Senses 33:35–46

    Article  CAS  PubMed  Google Scholar 

  • Ulland S, Ian E, Stranden M, Borg-Karlson AK, Mustaparta H (2008b) Plant volatiles activating specific olfactory receptor neurons of the cabbage moth Mamestra brassicae L. (Lepidoptera, Noctuidae). Chem Senses 33:509–522

    Article  CAS  PubMed  Google Scholar 

  • Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96:725–736

    Article  CAS  PubMed  Google Scholar 

  • Wadhams LJ (1982) Coupled gas chromatography-single cell recording: a new technique for use in the analysis of insect pheromones. Z Naturforsch 37c:947–952

    Article  CAS  Google Scholar 

  • Wicher D (2015) Olfactory signaling in insects. Prog Mol Biol Transl Sci 130:37

    Article  PubMed  Google Scholar 

  • Yager DD (2012) Predator detection and evasion by flying insects. Curr Opin Neurobiol 22:201–207

    Article  CAS  PubMed  Google Scholar 

  • Zhao XC, Pfuhl G, Surlykke A, Tro J, Berg BG (2013) A multisensory centrifugal neuron in the olfactory pathway of heliothine moths. J Comp Neurol 521:152–168

    Article  CAS  PubMed  Google Scholar 

  • Zhao XC, Kvello P, Løfaldli BB, Lillevoll SC, Mustaparta H, Berg BG (2014) Representation of pheromones, interspecific signals, and plant odors in higher olfactory centers; mapping physiologically identified antennal-lobe projection neurons in the male heliothine moth. Front Syst Neurosci 8:186

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao XC, Chen QY, Guo P, Xie GY, Tang QB, Guo XR, Berg BG (2016) Glomerular identification in the antennal lobe of the male moth, Helicoverpa armigera. J Comp Neurol 524:2993–3013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to Professor emeritus Hanna Mustaparta Department of Psychology, NTNU for her invaluable support and contributions on the manuscript. To Professor Bente G Berg and Assistant Professor Elena Ian for fruitful discussions and comments on the manuscript, and to the whole research group headed by Bente Berg at the Chemosensory Lab, Department of Psychology, NTNU in Trondheim for providing me an inspiring environment while writing this book chapter. To Elena Ian, Bente G Berg, Marit Stranden, Bjarte Bye Løfaldli and Øyvind Høydal, for allowing reuse of figures. I am also obliged to Professor Anne K Jonassen at NTNU in Gjøvik for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonette Røstelien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Røstelien, T. (2019). Recognition of Plant Odor Information in Moths. In: Picimbon, JF. (eds) Olfactory Concepts of Insect Control - Alternative to insecticides. Springer, Cham. https://doi.org/10.1007/978-3-030-05165-5_3

Download citation

Publish with us

Policies and ethics