Skip to main content

Evolution of Protein Physical Structures in Insect Chemosensory Systems

  • Chapter
  • First Online:

Abstract

Insect chemosensory protein (CSP) structures are built of six-seven α-helices, four cysteines making two adjacent disulfide bridges forming a multifunction prism for transport of lipid chains and small insecticide chemicals. Moth pheromone binding proteins (PBPs) have bowl-like globular structures made of six α-helices; six cysteines forming three interlocked disulfide bridges. Niemann-Pick type C2 proteins mediating chemical communication in ants display β-barrel structures, similar to mammalian lipocalins and odor binding proteins (OBPs). How do all these structures relate to each other from an evolutionary standpoint? What was the folding of the ancestral “chemosensory” molecule? A close overview of “chemosensory” protein structures described in insects suggests that addition of cysteine residues has played a key role in the evolution of function in the vast functional repertoire of binding proteins. In addition, motif insertion, motif inversion, duplication of amino acid pairs and specific residue substitution in typical locations of the protein structure might have been essential to lead to new protein structures and new functions. Importantly, addition of key residues such as glycine near conserved cysteine residues might lead to insertion or deletion of secondary structural elements, depending on the protein family. The chapter presented here describes the multi-level aspects of mutations that govern evolution and function in the vast repertoire of binding protein families. I try to understand evolution of these protein structures and functions using both RNA and peptide mutations recently discovered in the Bombyx system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham D, Gadenne C, Löfstedt C, Picimbon JF (2005) Molecular characterization and evolution of pheromone binding protein genes in Agrotis moths. Insect Biochem Mol Biol 35:1100–1111

    CAS  PubMed  Google Scholar 

  • Ahmed T, Zhang T, Wang Z, He K, Bai S (2017) C-terminus methionene specifically involved in binding corn odorants to odor binding protein4 in Macrocentrus cingulum. Front Physiol 8:62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aizenberg-Gershtein Y, Izhaki I, Halpem M (2013) Do honeybees shape the bacterial community composition in floral nectar. PLoS One 8:e67556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alhamidi M, Buvang EK, Fagerheim T, Brox V, Lindal S, Van Ghelue M, Nilssen Ø (2011) Fukutin-related protein resides in the Golgi cisternae of skeletal muscle fibres and form disulfide-linked homodimers via an N-terminal interaction. PLoS One 6:e22968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altman S (1990) Nobel lecture. Enzymatic cleavage of RNA by RNA. Biosci Rep 10:317–337

    Article  CAS  PubMed  Google Scholar 

  • Åmand HL, Nordén B, Fant K (2012) Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation. Biochem Biophys Res Commun 418:469–474

    Article  CAS  PubMed  Google Scholar 

  • Andras P, Andras C (2005) The origins of life – the ‘protein interaction world’ hypothesis: protein interactions were the first form of self-reproducing life and nucleic acids evolved later as memory molecules. Med Hypotheses 64:678–688

    Article  CAS  PubMed  Google Scholar 

  • Angeli S, Ceron F, Scaloni A, Monti M, Monteforti G, Minnocci A, Petacchi R, Pelosi P (1999) Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur J Biochem 262:745–754

    Article  CAS  PubMed  Google Scholar 

  • Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkins JF, Gesterland RF, Cech T (2006) The RNA world: the nature of modern RNA suggests a prebiotic RNA world. Cold Spring Harbor Laboratory Press, Plainview, pp 137–156

    Google Scholar 

  • Bartkiewicz M, Gold H, Altman S (1989) Identification and characterization of an RNA molecule that copurifies with RNase P activity from HeLa cells. Genes Dev 3:488–499

    Article  CAS  PubMed  Google Scholar 

  • Bashton M, Chothia C (2002) The geometry of domain contribution in proteins. J Mol Biol 315:927–939

    Article  CAS  PubMed  Google Scholar 

  • Baumann K (2017) Stem cells. A key to totipotency. Nat Rev Mol Cell Dev Biol 18:137

    Article  CAS  Google Scholar 

  • Bell SL, Forstner JF (2001) Role of the cysteine-knot motif at the C-terminus of rat mucin protein Muc2 in dimer formation and secretion. Biochem J 1:203–209

    Article  Google Scholar 

  • Bell TJ, Miyashiro KY, Sul JY, Buckley PT, Lee MT, McCullough RM, Jochems J, Kim J, Cantor CR, Parsons TD, Eberwine JH (2010) Intron retention facilitates splice variant diversity in calcium-activated big potassium channel populations. Proc Natl Acad Sci U S A 107:21152–21157

    Article  PubMed  PubMed Central  Google Scholar 

  • Breaker RR (2012) Riboswitches and the RNA world. Cold Spring Harb Perspect Biol 4:a003566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushdid C, Magnasco MO, Vosshall LB, Keller A (2014) Humans can discriminate more than 1 trillion olfactory stimuli. Science 343:1370–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo E, Mans BJ, Ribeiro JMC, Andersen JF (2009) Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein. Proc Natl Acad Sci U S A 106:3728–3733

    Article  PubMed  PubMed Central  Google Scholar 

  • Camoletto P, Colesanti A, Ozon S, Sobel A, Fasolo A (2001) Expression of stathmin and SCG10 proteins in the olfactory neurogenesis during development and after lesion in the adulthood. Brain Res Bull 1:19–28

    Article  Google Scholar 

  • Campanacci V, Lartigue A, Hällberg BM, Jones TA, Giuici-Orticoni MT, Tegoni M, Cambillau C (2003) Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding. Proc Natl Acad Sci U S A 100:5069–5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carruthers MD, Nicholson PA, Tracy EN, Munson RS Jr (2013) Acinetobacter baumannii utilizes a type VI secretion system for bacterial competition. PLoS One 8:e59388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castelvecchi D (2016) Building blocks for “RNA world” made from simple ingredients. Chemical assembly bolsters theory that life might have begun with RNA. Nature https://doi.org/10.1038/nature.2016.19901

  • Cech TR (1986) A model for the RNA-catalyzed replication of RNA. Proc Natl Acad Sci U S A 83:4360–4363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cech TR (1990) Nobel lecture. Self-splicing and enzymatic activity of an intervening sequence RNA from Tetrahymena. Biosci Rep 10:239–261

    Google Scholar 

  • Cech TR (2012) The RNA worlds in context. Cold Spring Harb Perspect Biol 4:a006742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W et al (2016) The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol 14:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claverie JM, Ogata H (2003) Insertion of palindromic repeats in the evolution of proteins. Trends Biochem Sci 28:75–80

    Article  CAS  PubMed  Google Scholar 

  • Condic ML (2014) Totipotency: what it is and what it is not. Stem Cells Dev 23:796–812

    Article  PubMed  Google Scholar 

  • Crick HH (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Article  CAS  PubMed  Google Scholar 

  • Dawaliby R, Trubbia C, Delporte C, Masureel M, Van Antwerpen P, Kobilka BK, Govaerts C (2016) Allosteric regulation of G-protein coupled receptor activity by phospholipids. Nat Chem Biol 12:35–39

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Latoud C, Buache E, Javouhey E, Arrigo AP (2005) Substitution of the unique cysteine residue of murine Hsp25 interferes with the protective activity of this stress protein through inhibition of dimer formation. Antioxid Redox Signal 7:436–445

    Article  CAS  PubMed  Google Scholar 

  • Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34

    Article  CAS  PubMed  Google Scholar 

  • Drurey C, Mathers TC, Prince DC, Wilson C, Caceres-Moreno C, Mugford ST, Hogenhout SA (2017) Chemosensory proteins in the CSP4 clade evolved as plant immunity suppressors before two suborders of plant-feeding hemipteran insects diverged. Cold Spring Harb Lab BioRxiv https://doi.org/10.1101/173278

  • Dutton RJ, Boyd D, Berkmen M, Beckwith J (2008) Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc Natl Acad Sci U S A 105:11933–11938

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckland EH, Szostak JW, Bartel DP (1995) Structurally complex and highly active RNA ligases derived from random RNA sequences. Science 269:364–370

    Article  Google Scholar 

  • Feng L, Prestwich GD (1997) Expression and characterization of a lepidopteran general odorant binding protein. Insect Biochem Mol Biol 27:405–412

    Article  CAS  PubMed  Google Scholar 

  • Ferré-D’Amaré AR, Scott WG (2010) Small self-cleaving ribozymes. Cold Spring Harb Prespect Biol 2:a003574

    Google Scholar 

  • Filloux A (2010) Secretion signal and protein targeting in bacteria: a biological puzzle. J Bacteriol 192:3847–3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto Z, Suzuki R, Shiotsuki T, Tsuchiya W, Tase A, Momma M, Yamazaki T (2013) Crystal structure of silkworm Bombyx mori JHBP in complex with 2-methyl-2,4-pentanediol: plasticity of JH-binding pocket and ligand-induced conformational change of the second cavity in JHBP. PLoS One 8:e56261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F (2013) Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Sci Rep 3:2471

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  • Gilbert W (1987) The exon theory of genes. Cold Spring Harb Symp Quant Boil 52:901–905

    Article  CAS  Google Scholar 

  • Glycos NM, Cesareni G, Kokkindis M (1999) Protein plasticity to the extreme: changing the topology of a 4-alpha-helical bundle with a single amino acid substitution. Structure 7:597–603

    Article  Google Scholar 

  • Gong DP, Zhang HJ, Zhao P, Lin Y, Xia QY, Xiang ZH (2007) Identification and expression pattern of the chemosensory protein gene family in the silkworm, Bombyx mori. Insect Biochem Mol Biol 37:266–277

    Article  CAS  PubMed  Google Scholar 

  • Graham LA, Brewer D, Lajoie G, Davies PL (2003) Characterization of a subfamily of beetle odorant-binding proteins found in hemolymph. Mol Cell Proteomics 2:541–549

    Article  CAS  PubMed  Google Scholar 

  • Gräter F, de Groot BL, Jiang H, Grubmüller H (2006a) Ligand release pathways in the pheromone-binding protein of Bombyx mori. Structure 14:1567–1576

    Article  CAS  PubMed  Google Scholar 

  • Gräter F, Xu W, Leal WS, Grubmüller H (2006b) Pheromone discrimination by the pheromone-binding protein of Bombyx mori. Structure 14:1577–1586

    Article  CAS  PubMed  Google Scholar 

  • Greengard P, Valtorta F, Czernik AJ, Benfenati F (1993) Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 5:780–785

    Article  Google Scholar 

  • Guerrier-Takada C, Altman S (1984) Catalytic activity of an RNA molecular prepared by transcription in vitro. Science 223:285–286

    Article  CAS  PubMed  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  CAS  PubMed  Google Scholar 

  • Hogenhout SA, Oshima K, El Desouky A, Namba S (2008) Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9:403–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horst R, Damberger F, Luginbühl P, Güntert P, Peng G, Nikonova L, Leal WS, Wüthrich K (2001) NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc Natl Acad Sci U S A 25:14374–14379

    Article  Google Scholar 

  • Jaiteh M, Taly A, Hénin J (2016) Evolution of pentameric ligand-gated ion channel: pro-loop receptors. PLoS One 11:e0151934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen S, Zídek L, Löfstedt C, Picimbon JF, Sklenar V (2006) 1H, 13C, and 15N resonance assignment of Bombyx mori chemosensory protein 1 (BmorCSP1). J Biomol NMR 36:47

    Article  PubMed  Google Scholar 

  • Jansen S, Chmelik J, Zídek L, Padrta P, Novak P, Zdrahal Z, Picimbon JF, Löfstedt C, Sklenar V (2007) Structure of Bombyx mori chemosensory protein 1 in solution. Arch Insect Biochem Physiol 66:135–145

    Article  CAS  PubMed  Google Scholar 

  • Jarvis DL, Summers MD, Bohlmeyer DA (1993) Influence of different signal peptides and prosequences on expression and secretion of human tissue plasminogen activator in the baculovirus system. J Biol Chem 268:16754–16762

    CAS  PubMed  Google Scholar 

  • Jindra M, Palli SR, Riddiford LM (2013) The juvenile hormone signaling pathway in insect development. Annu Rev Entomol 58:181–204

    Article  CAS  PubMed  Google Scholar 

  • Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17:529–535

    Article  CAS  PubMed  Google Scholar 

  • Kapp K, Schrempf S, Lemberg MK, Dobberstein B (2009) Post-targeting functions of signal peptides. In: Zimmermann R (ed) Protein transport into the endoplasmic reticulum. Landes Bioscience, Austin, 2000–2013

    Google Scholar 

  • Kay BK, Williamson MP, Sudol M (2000) The importance of being proline: the interaction of proline-rich motifs in signalling proteins with their cognate domains. FASEB J 14:231–241

    Article  CAS  PubMed  Google Scholar 

  • Keeley LL (1981) Neuroendocrine regulation of mitochondrial development and function in the insect fat body. In: Downer RGH (ed) Energy metabolism in insects. Springer, Boston, pp 207–237

    Chapter  Google Scholar 

  • Kim IH, Pham V, Jablonka W, Goodman WG, Ribeiro JMC, Andersen JF (2017) A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone. J Biol Chem 292:15329–15339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95:177–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolodziejczyk R, Bujacz G, Jakób M, Ożyhar A, Jaskolki M, Kochman M (2008) Insect juvenile hormone binding protein shows ancestral fold present in human lipid-binding proteins. J Mol Biol 377:870–881

    Article  CAS  PubMed  Google Scholar 

  • Krieger F, Möglich A, Kiefhaber T (2005) Effect of proline and glycine residues on dynamics and barriers of loop formation in polypeptide chains. J Am Chem Soc 127:3346–3352

    Article  CAS  PubMed  Google Scholar 

  • Krieger J, Gänßle K, Raming K, Breer H (1993) Odorant binding proteins of Heliothis virescens. Insect Biochem Mol Biol 23:449–456

    Article  CAS  PubMed  Google Scholar 

  • Krieger J, von Nickisch-Roseneck EV, Mameli M, Pelosi P, Breer H (1996) Binding proteins from the antennae of Bombyx mori. Insect Biochem Mol Biol 26:297–307

    Article  CAS  PubMed  Google Scholar 

  • Krishna MMG, Englander SW (2004) The N-terminal to C-terminal motif in protein folding and function. Proc Natl Acad Sci U S A 102:1053–1058

    Article  CAS  Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157

    Article  CAS  PubMed  Google Scholar 

  • Kulmuni J, Wurm Y, Pamilo P (2013) Comparative genomics of chemosensory protein genes reveals rapid evolution and positive selection in ant-specific duplicates. Heredity 110:538–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagarde S, Spinelli S, Qiao H, Tegoni M, Pelosi P, Cambillau C (2011) Crystal structure of a novel type of odorant-binding protein 20 from the malaria mosquito Anopheles gambiae, belonging to the C-plus class. Biochem J 437:423–430

    Article  CAS  PubMed  Google Scholar 

  • Lane JR, Abdul-Ridha A, Canals M (2013) Regulation of G-protein-coupled receptors by allosteric ligands. ACS Chem Neurosci 4:527–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lartigue A, Campanacci V, Roussel A, Larsson AM, Jones TA, Tegoni M, Cambillau C (2002) X-ray structure and ligand binding study of a moth chemosensory protein. J Biol Chem 277:32094–32098

    Article  CAS  PubMed  Google Scholar 

  • La Scola B, Raoult D (2004) Acinetobacter baumannii in human body louse. Emerg Infect Dis 10:1671–1673

    Article  PubMed  PubMed Central  Google Scholar 

  • Leal WS (2000) Duality monomer-dimer of the pheromone-binding protein from Bombyx mori. Biochem Biophys Res Commun 16:521–529

    Article  CAS  Google Scholar 

  • Leal WS, Nikonova L, Peng G (1999) Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Lett 464:85–90

    Article  CAS  PubMed  Google Scholar 

  • Leshkowitz D, Gazit S, Reuveni E, Ghanim M, Czosnek H, McKenzie C, Shatters RL Jr, Brown JK (2006) Whitefly (Bemisia tabaci) genome project: analysis of sequenced clones from egg, instar and adult (viruliferous and non-viruliferous) cDNA libraries. BMC Genomics 7:79–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liljas A, Liljas L, Ash MR, Lindblom G, Nissen P, Kjeldgaard M (2017) Textbook of structural biology, 2nd ed. World Scientific, p 612

    Google Scholar 

  • Lim S, Smith KR, Lim STS, Tian R, Lu J, Tan M (2016) Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation. Cell Biosci 6:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GX, Picimbon JF (2017) Bacterial origin of chemosensory odor-binding proteins. Gene Transl Bioinform 3:e1548

    Google Scholar 

  • Liu GX, Xuan N, Chu D, Xie HY, Fan ZX, Bi YP, Picimbon JF, Qin YC, Zhong ST, Li YF, Gao ZL, Pan WL, Wang GY, Rajashekar B (2014) Biotype expression and insecticide response of Bemisia tabaci chemosensory protein-1. Arch Insect Biochem Physiol 85:137–151

    Article  CAS  PubMed  Google Scholar 

  • Liu GX, Ma HM, Xie YN, Xuan N, Xia G, Fan ZX, Rajashekar B, Arnaud P, Offmann B, Picimbon JF (2016a) Biotype characterization, developmental profiling, insecticide response and binding property of Bemisia tabaci chemosensory proteins: role of CSP in insect defense. PLoS One 11:e0154706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GX, Ma HM, Xie HY, Xuan N, Picimbon JF (2016b) Sequence variation of Bemisia tabaci chemosensory protein 2 in cryptic species B and Q: new DNA markers for whitefly recognition. Gene 576:284–291

    Google Scholar 

  • Liu GX, Arnaud P, Offmann B, Picimbon JF (2017) Genotyping and bio-sensing chemosensory proteins in insects. Sensors 17:1801

    Article  CAS  PubMed Central  Google Scholar 

  • Liu GX, Yue S, Rajashekar B, Picimbon JF (2019) Expression of chemosensory protein (CSP) structures in Pediculus humanis corporis and Acinetobacter  A. baumannii. SOJ Microbiol Infect Dis in press

    Google Scholar 

  • Lo N, Tokuda G, Watanabe H, Rose H, Staylor M, Maekawa K, Bandi C, Noda H (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804

    Article  CAS  PubMed  Google Scholar 

  • Lombard J, López-García P, Moreira D (2012) The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol 10:507–515

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1156

    Article  CAS  PubMed  Google Scholar 

  • Maleszka J, Forêt S, Saint R, Maleszka R (2007) RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Dev Genes Evol 217:189–196

    Article  CAS  PubMed  Google Scholar 

  • Malhotra J, Dua A, Saxena A, Sangwan N, Mukherjee U, Pandey N, Rajagopal R, Khurana JP, Lal R (2012) Genome sequence of Acinetobacter sp. Strain HA, isolated from the gut of the polyphagous insect pest Helicoverpa armigera. J Bacterial 194:5156

    Article  CAS  Google Scholar 

  • Manoharan M, Ng Fuk Chong M, Vaïtinadapoulé A, Frumence E, Sowdhamini R, Offmann B (2013) Comparative genomics of odorant binding proteins in Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. Genome Biol Evol 5:163–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna MP, Hekmat-Scafe DS, Gaines P, Carlson JR (1994) Putative Drosophila pheromone-binding-proteins expressed in a subregion of the olfactory system. J Biol Chem 269:16340–16347

    Google Scholar 

  • Merrill CE, Riesgo-Escovar J, Pitts RJ, Kafatos FC, Carlson JR, Zwiebel LJ (2002) Visual arrestins in olfactory pathways of Drosophila and the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 99:1633–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micanovic R, Raches DW, Dunbar JD, Driver DA, Bina HA, Dickinson CD, Kharitonenkov A (2009) Different roles of N- and C-termini in the functional activity of FGF21. J Cell Physiol 219:227–234

    Article  CAS  PubMed  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  CAS  PubMed  Google Scholar 

  • Minard G, Mavingui P, Moro CV (2013) Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors 6:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgan AA, Rubenstein E (2013) Proline: the distribution, frequency, positioning, and common functional roles of proline and polyproline sequences in the human proteome. PLoS One 8:e53785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeau VG, Deber CM (2016) Structure of impact of proline mutations in the loop region of a ancestral membrane protein. Biopolymers 37:37–42

    Article  CAS  Google Scholar 

  • Nardi JB, Miller LA, Walden KKO, Rovelstad S, Wang L, Frye JC, Ramsdell K, Deem LS, Robertson HM (2003) Expression patterns of odorant binding proteins in antennae of the moth Manduca sexta. Cell Tissue Res 313:321–333

    Google Scholar 

  • Neurath H (1984) Evolution of proteolytic enzymes. Science 224:350–357

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama A, Komitova M, Suzuki R, Zhu X (2009) Polydendrocytes (NG2 cells) multifunctional cells with lineage plasticity. Nat Rev Neurosci 10:9–22

    Article  CAS  PubMed  Google Scholar 

  • Nomura A, Kawasaki K, Kubo T, Natori S (1992) Purification and localization of p10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana (American cockroach). Int J Dev Biol 36:391–398

    CAS  PubMed  Google Scholar 

  • Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393

    Article  CAS  PubMed  Google Scholar 

  • Ozaki M, Wada-Katsumata A, Fujikawa K, Iwasaki M, Yokohari F, Satoji Y, Nisimura T, Yamaoka R (2005) Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309:311–314

    Article  CAS  PubMed  Google Scholar 

  • Pancio HA, Vander Heyden N, Ratner L (2000) The C-terminal proline-rich tail of human immunodeficiency virus type 2 Vpx is necessary for nuclear localization of the viral preintgeration complex in nondividing cells. J Virol 74:6162–6167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne SH, Bonissone S, Wu S, Brown R, Ivankov DN, Frishman D, Pasa-Tolic L, Smith RD, Pevsner PA (2012) Unexpected diversity of signal peptides in prokaryotes. MBio 3:e00339–e00312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesenti ME, Spinelli S, Bezirard V, Briand L, Pernollet JC, Campanacci V, Tegoni M, Cambillau C (2009) Queen bee pheromone binding protein pH-induced domain swapping favors pheromone release. J Mol Biol 390:981–990

    Article  CAS  PubMed  Google Scholar 

  • Picimbon JF (2003) Biochemistry and evolution of CSP and OBP proteins. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, SanDiego/London, pp 539–566

    Google Scholar 

  • Picimbon JF (2005) Synthesis of odorant reception-suppressing agents, odorant binding proteins (OBPs) and chemosensory proteins (CSPs): molecular target for pest management. In: Regnault-Roger C, BJR P, Vincent C (eds) Biopesticides of plant origin. Lavoiser Publishing Inc., Intercept Ltd, Hampshire/Paris/Secaucus, pp 245–266

    Google Scholar 

  • Picimbon JF (2014a) RNA mutations: source of life. Gene Technol 3:112–122

    Google Scholar 

  • Picimbon JF (2014b) RNA mutations in the moth pheromone gland. RNA Dis 1:e240

    Google Scholar 

  • Picimbon JF (2014c) Renaming Bombyx mori chemosensory proteins. Int J Bioorganic Chem Mol Biol 2:201–204

    Google Scholar 

  • Picimbon JF (2016) Mutations in the insect transcriptome. J Clin Exp Pathol 6:3

    Google Scholar 

  • Picimbon JF (2017) A new view of genetic mutations. Australas Med J 10:701–715

    Article  Google Scholar 

  • Picimbon JF (2018) Molecular mechanism of insect chemosensory systems and human totipotent stem cells: RNA and protein editing. Scene 205: cell fate determinants and stem cell biology. BIT’s 9th Annual World DNA and Genome Day (WDD-2018), Dalian

    Google Scholar 

  • Picimbon JF, Leal WS (1999) Olfactory soluble proteins of cockroaches. Insect Biochem Mol Biol 29:973–978

    Article  CAS  Google Scholar 

  • Picimbon JF, Gadenne G (2002) Evolution in noctuid pheromone binding proteins: identification of PBP in the black cutworm moth, Agrotis ipsilon. Insect Biochem Mol Biol 32:839–846

    CAS  PubMed  Google Scholar 

  • Picimbon JF, Regnault-Roger C (2008) Composés semiochimiques volatils, phytoprotection et olfaction: cibles moleculaires pour la lutte intégrée. In: Regnault-Roger C, Philogѐne BJR, Vincent C (eds) Biopesticides d’Origine Végétale, 2nd edn. Lavoisier, Paris, pp 383–415

    Google Scholar 

  • Picimbon JF, Dietrich K, Breer H, Krieger J (2000a) Chemosensory proteins of Locusta migratoria (Orthoptera: Acrididae). Insect Biochem Mol Biol 30:233–241

    Article  CAS  PubMed  Google Scholar 

  • Picimbon JF, Dietrich K, Angeli S, Scaloni A, Krieger J, Breer H, Pelosi P (2000b) Purification and molecular cloning of chemosensory proteins from Bombyx mori. Arch Insect Biochem Physiol 44:120–129

    Article  CAS  PubMed  Google Scholar 

  • Picimbon JF, Dietrich K, Krieger J, Breer H (2001) Identity and expression pattern of chemosensory proteins in Heliothis virescens (Lepidoptera, Noctuidae). Insect Biochem Mol Biol 31:1173–1181

    Article  CAS  PubMed  Google Scholar 

  • Pikielny CW, Hasan G, Rouyer F, Rosbach M (1994) Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron 12:35–49

    Google Scholar 

  • Poole AM, Phillips MJ, Penny D (2003) Prokaryote and eukaryote evolvability. Biosystems 69:163–185

    Article  CAS  PubMed  Google Scholar 

  • Rahme LG, Ausubel FM, Cao H, Drenkard E, Goumnerov BC, Lau GW, Mahajan-Miklos S, Plotnikova J, Tan MW, Tsongalis J, Walendziewicz CL, Tompkins RG (2000) Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A 97:8815–8821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reanney DC (1982) The evolution of RNA viruses. Annu Rev Microbiol 36:47–73

    Article  CAS  PubMed  Google Scholar 

  • Ringstad N, Nemoto Y, De Camilli P (1997) The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc Natl Acad Sci U S A 5:8569–8574

    Article  Google Scholar 

  • Rothemund S, Liou YC, Davies PL, Sönnichsen FD (1997) Backbone structure and dynamics of a hemolymph protein from the mealworm beetle Tenebrio molitor. Biochemistry 36:13791–13801

    Article  CAS  PubMed  Google Scholar 

  • Rothemund S, Liou YC, Davies PL, Krause E, Sönnichsen FD (1999) A new class of hexahelical insect proteins revealed as putative carriers of small hydrophobic ligands. Structure 7:1325–1332

    Article  CAS  PubMed  Google Scholar 

  • Sabatier L, Jouanguy E, Dostert C, Zachary D, Dimarcq JL, Bulet P, Imler JL (2003) Pherokine-2 and -3: two Drosophila molecules related to pheromone/odor-binding proteins induced by viral and bacterial infections. Eur J Biol 270:3398–3407

    Article  CAS  Google Scholar 

  • Salem H, Kreutzer E, Sudakaran S, Kaltenpoth M (2013) Actinobacteria as essential symbionts in firebugs and cotton stainers (Hemiptera, Pyrrhocoridae). Environ Microbiol 15:1956–1968

    Article  PubMed  Google Scholar 

  • Sandler BH, Nikonova L, Leal WS, Clardy J (2000) Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol 7:143–151

    Article  CAS  PubMed  Google Scholar 

  • Scaloni A, Monti M, Angeli S, Pelosi P (1999) Structural analysis and disulfide bridge pairing of two odorant binding proteins from Bombyx mori. Biochem Biophys Res Commun 266:386–391

    Article  CAS  PubMed  Google Scholar 

  • Schymkovitz JW, Rousseau F, Wilkinson HR, Friedler A, Itzakhi LS (2001) Observation of signal transduction in three-dimensional domain swapping. Nat Struct Biol 8:888–892

    Article  CAS  Google Scholar 

  • Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862–875

    Article  CAS  PubMed  Google Scholar 

  • Sheperd GM (2004) The human sense of smell: are we better than we think? PLoS Biol 2:e146

    Article  CAS  Google Scholar 

  • Skieterska K, Rondou P, Van Craenenbroeck K (2017) Regulation of G protein-coupled receptors by ubiquitination. Int J Mol Sci 18:923

    Article  CAS  PubMed Central  Google Scholar 

  • Steinbrecht RA, Laue M, Ziegelberger G (1995) Immunolocalization of pheromone-binding protein and general odorant binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx. Cell Tissue Res 282:287–302

    Article  Google Scholar 

  • Suzuki R, Fujimoto Z, Shiotsuki T, Tsuchiya W, Momma M, Tase A, Miyazawa M, Yamazaki T (2011) Structural mechanism of JH delivery in hemolymph by JHBP of silkworm Bombyx mori. Sci Rep 1:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura T, Asakura T, Uemura T, Ueda T, Terauchi K, Misaka T, Abe K (2008) Signal peptide peptidase and its homologs in Arabidopsis thaliana-plant tissue-specific expression and distinct subcellular localization. FEBS J 275:34–43

    Article  CAS  PubMed  Google Scholar 

  • Tomaselli S, Crescenzi O, Sanfelice D, Ab E, Wechselberger R, Angeli S, Scaloni A, Boelens R, Tancredi T, Pelosi P, Picone D (2006) Solution structure of a chemosensory protein from the desert locust Schistocerca gregaria. Biochemistry 45:1606–1613

    Article  CAS  Google Scholar 

  • Tsitanou KE, Drakou CE, Thireou T, Gruber AV, Kythreoti G, Azem A, Fessas D, Eliopoulos E, Iatrou K, Zographos SE (2013) Crystal and solution studies of the “Plus-C” odorant-binding protein 48 from Anopheles gambiae – control of binding specificity through three-dimensional domain swapping. J Biol Chem 288:33427–33438

    Article  CAS  Google Scholar 

  • Vibranovski MD, Sakabe NJ, Suza SJD (2006) A possible role of exon-shuffling in the evolution of signal peptides of human proteins. FEBS Lett 580:1621–1624

    Article  CAS  PubMed  Google Scholar 

  • Vieira FG, Sánchez-Gracia A, Rozas J (2007) Comparative genomic analysis of the odorant-binding protein family in 12 Drosophila genomes: purifying selection and birth-and-death evolution. Genome Biol 8:R235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel C, Bashton M, Kerrison ND, Chotia C, Teichmann SA (2004) Structure, function and evolution of multidomain proteins. Curr Opin Struct Biol 14:208–216

    Article  CAS  PubMed  Google Scholar 

  • Vogt RG (2003) Biochemical diversity of odor detection: OBPs, ODEs and SNMPs. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, SanDiego/London, pp 391–446

    Google Scholar 

  • Vogt RG (2005) Molecular basis of pheromone detection in insects. In: Gilbert LI, Iatrou K, Gill S (eds) Comprehensive insect physiology, biochemistry, pharmacology and molecular biology, vol. 3. Endocrinology. Elsevier, London, pp 753–804

    Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163

    Article  CAS  PubMed  Google Scholar 

  • Vogt RG, Köhne AC, Dubnau JT, Prestwich GD (1989) Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar. J Neurosci 9:332–3346

    Article  Google Scholar 

  • Vogt RG, Rybczynski R, Lerner MR (1991) Molecular cloning and sequencing of general odorant-binding proteins GOBP1 and GOBP2 from the tobacco hawk moth Manduca sexta: comparisons with other insect OBPs and their signal peptides. J Neurosci 11:2972–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt RG, Rogers ME, Franco MD, Sun M (2002) A comparative study of odorant binding protein genes: differential expression of the PBP1-GOBP2 gene cluster in Manduca sexta (Lepidoptera) and the organization of OBP genes in Drosophila melanogaster (Diptera). J Exp Biol 205:719–744

    CAS  PubMed  Google Scholar 

  • Wada-Katsumata A, Zurek L, Nalyanya G, Roelofs WL, Zhang A, Schal C (2015) Gut bacteria mediate aggregation in the German cockroach. Proc Natl Acad Sci U S A 112:15678–15683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walter NG, Engelke DR (2002) Ribozymes: catalytic RNAs that cut things, make things, and do odd and useful jobs. Biologist (London) 49:199–203

    Google Scholar 

  • Wang W, Barger SW (2011) Roles of quaternary structure and cysteine residues in the activity of human serine racemase. BMC Biochem 12:1–11

    Article  CAS  Google Scholar 

  • Wanner KW, Isman MB, Feng Q, Plettner E, Theilmann DA (2005) Developmental expression patterns of four chemosensory protein genes from the Eastern spruce budworm, Choristoneura fumiferana. Insect Mol Biol 14:289–300

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gummienny R, Heer FT, De Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296-W303

    Google Scholar 

  • Watson JD (1993) Prologue: early speculations and facts about RNA templates. In: Gesteland RF, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp xv–xxiii

    Google Scholar 

  • Woese CR (1967) The genetic code: the molecular basis for genetic expression. Harper & Row, New York, p 186

    Google Scholar 

  • Wojtasek H, Leal WS (1999) Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. J Biol Chem 274:30950–30956

    Article  CAS  PubMed  Google Scholar 

  • Wong JWH, Ho SYW, Hogg PJ (2011) Disulfide bond acquisition through eukaryotic protein evolution. Mol Biol Evol 28:327–334

    Article  CAS  PubMed  Google Scholar 

  • Wooldridge L, Ekeruche-Makinde J, van den Berg HA, Skowera A, Miles JJ, Tan MP, Dolton G, Clement M, Liewellyn-Lacey S, Price DA, Pealman M, Sewell AK (2012) A single autoimmune T cell receptor recognizes more than a million different peptides. J Biol Chem 287:1168–1177

    Article  CAS  PubMed  Google Scholar 

  • Xu XM, Turanov AA, Carlson BA, Yoo MH, Everley RA, Nandakumar R, Sorokina I, Gygi SP, Gladyshev VN, Hatfield DL (2010) Targeted insertion of cysteine by decoding UGA codons with mammalian selenocysteine machinery. Proc Natl Acad Sci U S A 14:21430–21434

    Article  Google Scholar 

  • Xuan N, Bu X, Liu YY, Yang X, Liu GX, Fan ZX, Bi YP, Yang LQ, Lou QN, Rajashekar B, Leppik G, Kasvandik S, Picimbon JF (2014) Molecular evidence of RNA editing in Bombyx chemosensory protein family. PLoS One 9:e86932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuan N, Guo X, Xie HY, Lou QN, Bo LX, Liu GX, Picimbon JF (2015) Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. Insect Sci 22:203–219 (INSECT SCIENCE AWARD 2017)

    Google Scholar 

  • Xuan N, Rajashekar B, Kasvandik S, Picimbon JF (2016) Structural components of chemosensory protein mutations in the silkworm moth, Bombyx mori. Agri Gene 2:53–58

    Article  Google Scholar 

  • Xuan N, Rajashekar B, Picimbon JF (2019) DNA and RNA-dependent polymerization in editing of Bombyx chemosensory protein (CSP) gene family. Agri Gene in press

    Google Scholar 

  • Zalewska M, Kochman A, Estève JP, Lopez F, Chaoui K, Susini C, Ożyhar A, Kochman M (2009) Juvenile hormone binding protein traffic – interaction with ATP synthase and lipid transfer proteins. Biochim Biophys Acta Biomembr 1788:1695–1705

    Article  CAS  Google Scholar 

  • Zhou JJ, Roberson G, He X, Dufour S, Hooper AM, Pickett JA, Keep NH, Field LM (2009) Characterisation of Bombyx mori odorant-binding-proteins reveals that a general odorant-binding-protein discriminates between sex pheromone components. J Mol Biol 389:529–545

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Ban L, Son LM, Liu Y, Pelosi P, Wang G (2016) General odorant-binding proteins and sex pheromone guide larvae of Plutella xylostella to better food. Insect Biochem Mol Biol 72:10–19

    Article  CAS  PubMed  Google Scholar 

Download references

Ackowledgements

Heartfelt thanks to Prof. Em. Anders Liljas (Lund University, Sweden) for inspiration, discussion and most helpful comments on early versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Picimbon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Picimbon, JF. (2019). Evolution of Protein Physical Structures in Insect Chemosensory Systems. In: Picimbon, JF. (eds) Olfactory Concepts of Insect Control - Alternative to insecticides. Springer, Cham. https://doi.org/10.1007/978-3-030-05165-5_10

Download citation

Publish with us

Policies and ethics