Skip to main content

Sequences with Low Correlation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11321))

Abstract

Pseudorandom sequences are used extensively in communications and remote sensing. Correlation provides one measure of pseudorandomness, and low correlation is an important factor determining the performance of digital sequences in applications. We consider the problem of constructing pairs (fg) of sequences such that both f and g have low mean square autocorrelation and f and g have low mean square mutual crosscorrelation. We focus on aperiodic correlation of binary sequences, and review recent contributions along with some historical context.

This paper is based upon work supported in part by the National Science Foundation under Grants DMS-1500856 and CCF-1815487.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This sequence was formed using the specific choice of 1 as the additive generator of \({\mathbb F}_p\). We could have replaced 1 with any other \(a\in {\mathbb F}_p^{*}\) to form the list \(0,a,2a,\ldots ,(p-1)a\) of elements of \({\mathbb F}_p\) instead of (13), and then apply \(\chi \) to every term to get \(\left( \chi (0),\chi (a),\chi (2 a),\ldots ,\chi ((p-1)a)\right) \). This would just give the sequence in (14) multiplied by the unimodular scalar \(\chi (a)\). This scalar multiplciation has no effect on the magnitudes of correlation values.

References

  1. Boehmer, A.M.: Binary pulse compression codes. IEEE Trans. Inform. Theory 13(2), 156–167 (1967)

    Article  Google Scholar 

  2. Boothby, K.T.R., Katz, D.J.: Low correlation sequences from linear combinations of characters. IEEE Trans. Inform. Theory 63(10), 6158–6178 (2017)

    Article  MathSciNet  Google Scholar 

  3. Borwein, P., Mossinghoff, M.: Rudin-Shapiro-like polynomials in \(L_4\). Math. Comput. 69(231), 1157–1166 (2000)

    Article  MathSciNet  Google Scholar 

  4. Brillhart, J., Carlitz, L.: Note on the Shapiro polynomials. Proc. Amer. Math. Soc. 25, 114–118 (1970)

    Article  MathSciNet  Google Scholar 

  5. Ding, C., Helleseth, T., Lam, K.Y.: Several classes of binary sequences with three-level autocorrelation. IEEE Trans. Inform. Theory 45(7), 2606–2612 (1999)

    Article  MathSciNet  Google Scholar 

  6. Ding, C., Helleseth, T., Lam, K.Y.: Duadic sequences of prime lengths. Discrete Math. 218(1–3), 33–49 (2000)

    Article  MathSciNet  Google Scholar 

  7. Golay, M.J.E.: Static multislit spectrometry and its application to the panoramic display of infrared spectra. J. Opt. Soc. Am. 41(7), 468–472 (1951)

    Article  Google Scholar 

  8. Golay, M.J.E.: A class of finite binary sequences with alternate autocorrelation values equal to zero. IEEE Trans. Inform. Theory 18, 449–450 (1972)

    Article  Google Scholar 

  9. Golay, M.J.E.: Hybrid low autocorrelation sequences. IEEE Trans. Inform. Theory 21, 460–462 (1975)

    Article  Google Scholar 

  10. Golay, M.J.E.: Sieves for low autocorrelation binary sequences. IEEE Trans. Inform. Theory 23, 43–51 (1977)

    Article  Google Scholar 

  11. Golay, M.J.E.: The merit factor of long low autocorrelation binary sequences. IEEE Trans. Inform. Theory 28(3), 543–549 (1982)

    Article  Google Scholar 

  12. Golay, M.J.E.: The merit factor of Legendre sequences. IEEE Trans. Inform. Theory 29, 934–936 (1983)

    Article  Google Scholar 

  13. Gold, R.: Optimal binary sequences for spread spectrum multiplexing. IEEE Trans. Inform. Theory 13(4), 619–621 (1967)

    Article  MathSciNet  Google Scholar 

  14. Golomb, S.W.: Shift register sequences. With portions co-authored by Lloyd R. Welch, Richard M. Goldstein, and Alfred W. Hales, Holden-Day Inc., San Francisco, California-Cambridge-Amsterdam (1967)

    Google Scholar 

  15. Golomb, S.W., Gong, G.: Signal Design for Good Correlation. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  16. Günther, C., Schmidt, K.U.: Merit factors of polynomials derived from difference sets. J. Combin. Theory Ser. A 145, 340–363 (2017)

    Article  MathSciNet  Google Scholar 

  17. Høholdt, T., Jensen, H.E.: Determination of the merit factor of Legendre sequences. IEEE Trans. Inform. Theory 34(1), 161–164 (1988)

    Article  Google Scholar 

  18. Høholdt, T., Jensen, H.E., Justesen, J.: Aperiodic correlations and the merit factor of a class of binary sequences. IEEE Trans. Inform. Theory 31(4), 549–552 (1985)

    Article  MathSciNet  Google Scholar 

  19. Jedwab, J., Katz, D.J., Schmidt, K.U.: Advances in the merit factor problem for binary sequences. J. Combin. Theory Ser. A 120(4), 882–906 (2013)

    Article  MathSciNet  Google Scholar 

  20. Jedwab, J., Katz, D.J., Schmidt, K.U.: Littlewood polynomials with small \(L^4\) norm. Adv. Math. 241, 127–136 (2013)

    Article  MathSciNet  Google Scholar 

  21. Jedwab, J., Schmidt, K.U.: The merit factor of binary sequence families constructed from \(m\)-sequences. Finite fields: theory and applications. Contemp. Math. 518, 265–278 (2010)

    Article  Google Scholar 

  22. Jedwab, J., Schmidt, K.U.: The \(L_4\) norm of Littlewood polynomials derived from the Jacobi symbol. Pacific J. Math. 257(2), 395–418 (2012)

    Article  MathSciNet  Google Scholar 

  23. Jensen, H.E., Høholdt, T.: Binary sequences with good correlation properties. In: Huguet, L., Poli, A. (eds.) AAECC 1987. LNCS, vol. 356, pp. 306–320. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51082-6_87

    Chapter  Google Scholar 

  24. Jensen, J.M., Jensen, H.E., Høholdt, T.: The merit factor of binary sequences related to difference sets. IEEE Trans. Inform. Theory 37((3 part 1)), 617–626 (1991)

    Article  MathSciNet  Google Scholar 

  25. Kärkkäinen, K.H.A.: Mean-square cross-correlation as a performance measure for department of spreading code families. In: IEEE Second International Symposium on Spread Spectrum Techniques and Applications, pp. 147–150 (1992)

    Google Scholar 

  26. Katz, D.J.: Asymptotic \(L^4\) norm of polynomials derived from characters. Pacific J. Math. 263(2), 373–398 (2013)

    Article  MathSciNet  Google Scholar 

  27. Katz, D.J.: Aperiodic crosscorrelation of sequences derived from characters. IEEE Trans. Inform. Theory 62(9), 5237–5259 (2016)

    Article  MathSciNet  Google Scholar 

  28. Katz, D.J., Lee, S., Trunov, S.A.: Crosscorrelation of Rudin-Shapiro-like polynomials. Preprint, arXiv:1702.07697 (2017)

  29. Katz, D.J., Moore, E.: Sequence pairs with lowest combined autocorrelation and crosscorrelation. Preprint, arXiv:1711.02229 (2017)

  30. Katz, D.J., Lee, S., Trunov, S.A.: Rudin-Shapiro-like polynomials with maximum asymptotic merit factor. Preprint, arXiv:1711.02233 (2017)

  31. Kirilusha, A., Narayanaswamy, G.: Construction of new asymptotic classes of binary sequences based on existing asymptotic classes. Summer Science Technical report, Department of Mathematics & Computer Science, University of Richmond, VA (1999)

    Google Scholar 

  32. Littlewood, J.E.: On polynomials \(\sum ^{n}\pm z^{m}\), \(\sum ^{n}e^{\alpha _{m}i}z^{m}\), \(z=e^{\theta _{i}}\). J. London Math. Soc. 41, 367–376 (1966)

    Article  MathSciNet  Google Scholar 

  33. Littlewood, J.E.: Some Problems in Real and Complex Analysis. D. C. Heath and Co., Raytheon Education Co., Lexington, Massachusetts (1968)

    Google Scholar 

  34. Mauduit, C., Sárközy, A.: On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol. Acta Arith. 82(4), 365–377 (1997)

    Article  MathSciNet  Google Scholar 

  35. Parker, M.G.: Even length binary sequence families with low negaperiodic autocorrelation. In: Boztaş, S., Shparlinski, I.E. (eds.) AAECC 2001. LNCS, vol. 2227, pp. 200–209. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45624-4_21

    Chapter  Google Scholar 

  36. Pursley, M.B., Sarwate, D.V.: Bounds on aperiodic cross-correlation for binary sequences. Electron. Lett. 12(12), 304–305 (1976)

    Article  Google Scholar 

  37. Rudin, W.: Some theorems on Fourier coefficients. Proc. Amer. Math. Soc. 10, 855–859 (1959)

    Article  MathSciNet  Google Scholar 

  38. Sarwate, D.V.: Mean-square correlation of shift-register sequences. IEE Proc. F-Commun. Radar Signal Process. 131(2), 101–106 (1984)

    Article  Google Scholar 

  39. Schmidt, K.U., Jedwab, J., Parker, M.G.: Two binary sequence families with large merit factor. Adv. Math. Commun. 3(2), 135–156 (2009)

    Article  MathSciNet  Google Scholar 

  40. Scholtz, R.A., Welch, L.R.: GMW sequences. IEEE Trans. Inform. Theory 30(3), 548–553 (1984)

    Article  MathSciNet  Google Scholar 

  41. Schroeder, M.R.: Number Theory in Science and Communication. With Applications in Cryptography, Physics, Digital Information, Computing, and Self-similarity. Springer Series in Information Sciences, vol. 7, 4th edn. Springer, Heidelberg (2006). https://doi.org/10.1007/b137861

    Book  MATH  Google Scholar 

  42. Shapiro, H.S.: Extrenal problems for polynomials and power series. Master’s thesis. Institute of Technology, Cambridge, Massachusetts (1951)

    Google Scholar 

  43. Sidel’nikov, V.M.: Some \(k\)-valued pseudo-random sequences and nearly equidistant codes. Problemy Peredači Informacii 5(1), 16–22 (1969)

    MathSciNet  MATH  Google Scholar 

  44. Turyn, R.J.: Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings. J. Combin. Theory Ser. A 16, 313–333 (1974)

    Article  MathSciNet  Google Scholar 

  45. Xiong, T., Hall, J.I.: Construction of even length binary sequences with asymptotic merit factor 6. IEEE Trans. Inform. Theory 54(2), 931–935 (2008)

    Article  MathSciNet  Google Scholar 

  46. Xiong, T., Hall, J.I.: Modifications of modified Jacobi sequences. IEEE Trans. Inform. Theory 57(1), 493–504 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The author thanks Yakov Sapozhnikov for his careful reading of this paper and his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Katz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Katz, D.J. (2018). Sequences with Low Correlation. In: Budaghyan, L., Rodríguez-Henríquez, F. (eds) Arithmetic of Finite Fields. WAIFI 2018. Lecture Notes in Computer Science(), vol 11321. Springer, Cham. https://doi.org/10.1007/978-3-030-05153-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05153-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05152-5

  • Online ISBN: 978-3-030-05153-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics