Skip to main content

Variations on a Theme of Schubert Calculus

  • Chapter
  • First Online:
Recent Trends in Algebraic Combinatorics

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 16))

Abstract

In this tutorial, we provide an overview of many of the established combinatorial and algebraic tools of Schubert calculus, the modern area of enumerative geometry that encapsulates a wide variety of topics involving intersections of linear spaces. It is intended as a guide for readers with a combinatorial bent to understand and appreciate the geometric and topological aspects of Schubert calculus, and conversely for geometric-minded readers to gain familiarity with the relevant combinatorial tools in this area. We lead the reader through a tour of three variations on a theme: Grassmannians, flag varieties, and orthogonal Grassmannians. The orthogonal Grassmannian, unlike the ordinary Grassmannian and the flag variety, has not yet been addressed very often in textbooks, so this presentation may be helpful as an introduction to type B Schubert calculus. This work is adapted from the author’s lecture notes for a graduate workshop during the Equivariant Combinatorics Workshop at the Center for Mathematics Research, Montreal, June 12–16, 2017.

Supported by NSF MSPRF grant PDRF 1604262.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See [49] for Schubert’s original work, or [45] for a modern exposition on Schubert’s methods.

  2. 2.

    A play on words that references the shared surname with musical composer Franz Schubert, who also lived in Germany in the nineteenth century.

  3. 3.

    Photograph of the train tracks downloaded from edupic.net.

  4. 4.

    Unfortunately, we could not find any photographs of parabolic train tracks.

References

  1. H. Abe, S. Billey, Consequences of the Lakshmibai-Sandhya Theorem: The ubiquity of permutation patterns in Schubert calculus and related geometry (2014), arxiv:1403.4345

  2. D. Anderson, Introduction to equivariant cohomology in algebraic geometry, Notes on lectures by W. Fulton at IMPAGNA summer school (2010), arXiv:1112.1421

  3. D. Anderson, L. Chen, Equivariant quantum Schubert polynomials. Adv. Math. 254, 300–330 (2014)

    Article  MathSciNet  Google Scholar 

  4. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov, J. Trnka, Grassmannian Geometry of Scattering Amplitudes (Cambridge University Press, Cambridge, 2016)

    Book  Google Scholar 

  5. F. Bergeron, Algebraic Combinatorics and Coinvariant Spaces (CRC Press, Baco Raton, 2009)

    Book  Google Scholar 

  6. I.N. Bernstein, I.M. Gelfand, S.I. Gelfand, Schubert cells and cohomology of the spaces \(G/P\). Russ. Math. Surv. 28(3), 1–26 (1973)

    Article  MathSciNet  Google Scholar 

  7. A. Bertiger, E. Milićević, K. Taipale, Equivariant quantum cohomology of the Grassmannian via the rim hook rule (2014), arxiv:1403.6218

  8. S. Billey, M. Haiman, Schubert polynomials for the classical groups. J. Amer. Math. Soc. 8(2) (1995)

    Article  MathSciNet  Google Scholar 

  9. S. Billey, V. Lakshmibai, Singular Loci of Schubert Varieties (Springer, Berlin, 2000)

    Book  Google Scholar 

  10. A. Bjorner, F. Brenti, Combinatorics of Coxeter Groups (Springer, Berlin, 2005)

    MATH  Google Scholar 

  11. J. Bourjaily, H. Thomas, What is the Amplituhedron? Not. AMS 65, 167–169 (2018)

    MathSciNet  MATH  Google Scholar 

  12. A. Buch, A Littlewood–Richardson rule for the \(K\)-theory of Grassmannians. Acta Math. 189(1), 37–78 (2002)

    Article  MathSciNet  Google Scholar 

  13. A. Buch, A. Kresch, K. Purbhoo, H. Tamvakis, The puzzle conjecture for the cohomology of two-step flag manifolds. J. Alg. Comb. 44(4), 973–1007 (2016)

    Article  MathSciNet  Google Scholar 

  14. L. Chen, Quantum cohomology of flag manifolds. Adv. Math. 174(1), 1–34 (2003)

    Article  MathSciNet  Google Scholar 

  15. I. Coskun, A Littlewood–Richardson rule for partial flag varieties, preprint (under revision), http://www.homepages.math.uic.edu/~coskun/newpartial.pdf

  16. I. Coskun, A Littlewood–Richardson rule for two-step flag varieties. Invent. Math. 176, 325 (2009)

    Article  MathSciNet  Google Scholar 

  17. D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms, vol. 2 (Springer, Berlin, 1991)

    MATH  Google Scholar 

  18. J.S. Frame, G.de B. Robinson, R.M. Thrall, The hook graphs of the symmetric group. Can. J. Math. 6, 316–325 (1954)

    Article  MathSciNet  Google Scholar 

  19. S. Fomin, S. Gelfand, Quantum Schubert polynomials. J. Amer. Math. Soc. 10, 565–596 (1997)

    Article  MathSciNet  Google Scholar 

  20. S. Fomin, A. Kirillov, Combinatorial \(B_n\)-analogues of Schubert polynomials. Trans. Am. Math. Soc. 348(9) (1996)

    Google Scholar 

  21. W. Fulton, Intersection Theory, vol. 2 (Springer, Berlin, 1998)

    Book  Google Scholar 

  22. W. Fulton, Young Tableaux, with Applications to Representation Theory and Geometry (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  23. A.M. Garsia, C. Procesi, On certain graded \(S_n\)-modules and the \(q\)-Kostka polynomials. Adv. Math. 94(1), 82–138 (1992)

    Article  MathSciNet  Google Scholar 

  24. V. Gasharov, V. Reiner, Cohomology of smooth Schubert varieties in partial flag manifolds. J. Lond. Math. Soc. 66(3), 550–562 (2002)

    Article  MathSciNet  Google Scholar 

  25. M. Gillespie, J. Levinson, K. Purbhoo, A crystal-like structure on shifted tableaux (2017), arxiv:1706.09969

  26. R. Green, Combinatorics of Minuscule Representations (Cambridge Tracts in Mathematics 199) (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  27. A. Hatcher, Algebraic Topology (Cambridge University Press, Cambridge, 2001)

    MATH  Google Scholar 

  28. S. Kleiman, D. Laskov, Schubert calculus. Am. Math. Mon. 79(10), 1061–1082 (1972)

    Article  MathSciNet  Google Scholar 

  29. A. Knutson, T. Tao, C. Woodward, The honeycomb model of \(GL_n({\mathbb{C}})\) tensor products II: puzzles determine facets of the Littlewood–Richardson cone. J. Am. Math. Soc. 17, 19–48 (2004)

    Article  Google Scholar 

  30. A. Knutson, P. Zinn-Justin, Schubert, puzzles and integrability I: invariant trilinear forms (2017), arxiv:1706.10019v4

  31. E.R. Kolchin, Algebraic matric groups and the Picard–Vessiot theory of homogeneous linear ordinary differential equations. Ann. Math. Second Ser. 49, 1–42 (1948)

    Article  MathSciNet  Google Scholar 

  32. M. Kontsevich, Yu. Manin, Gromov–Witten classes, quantum cohomology, and enumerative geometry. Commun. Math. Phys. 164, 525–562 (1994)

    Article  MathSciNet  Google Scholar 

  33. Kac-Moody Groups, Their Flag Varieties and Representation Theory, vol. 204, Progress in Mathematics (Birkhäuser, Basel, 2002)

    Google Scholar 

  34. T. Lam, L. Lapointe, J. Morse, A. Schilling, M. Shimozono, M. Zabrocki, \(k\)-Schur Functions and Affine Schubert Calculus (Springer, Berlin, 2014)

    MATH  Google Scholar 

  35. V. Lakshmibai, B. Sandhya, Criterion for smoothness of Schubert varieties in \(SL(n)/B\). Proc. Indian Acad. Sci. Math. Sci. 100, 45 (1990)

    Google Scholar 

  36. A. Lascoux, M.-P. Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294(13), 447–450 (1982)

    Google Scholar 

  37. S.J. Lee, Combinatorial description of the cohomology of the affine flag variety. Trans. Am. Math. Soc. arXiv:1506.02390 (to appear)

  38. I. Macdonald, Symmetric Functions and Hall Polynomials (Oxford University Press, Oxford, 1979)

    MATH  Google Scholar 

  39. L. Manivel, Symmetric Functions, Schubert Polynomials, and Degeneracy Loci, American Mathematical Society (2001)

    Google Scholar 

  40. E. Mukhin, V. Tarasov, A. Varchenko, Schubert calculus and representations of the general linear group. J. Am. Math. Soc. 22(4), 909–940 (2009)

    Article  MathSciNet  Google Scholar 

  41. O. Pechenik, A. Yong, Equivariant K-theory of Grassmannians. Forum Math. Pi 5, 1–128 (2017)

    Article  MathSciNet  Google Scholar 

  42. O. Pechenik, A. Yong, Equivariant K-theory of Grassmannians II: the Knutson–Vakil conjecture. Compos. Math. 153, 667–677 (2017)

    Article  MathSciNet  Google Scholar 

  43. A. Postnikov, D. Speyer, L. Williams, Matching polytopes, toric geometry, and the totally non-negative Grassmannian. J. Alg. Comb. 30, 173–191 (2009)

    Article  MathSciNet  Google Scholar 

  44. P. Pragacz, Algebro-geometric applications of Schur \(S\)- and \(Q\)-polynomials, in Topics in Invariant Theory, vol. 1478, Springer Lecture Notes in Mathematics, ed. by M.P. Malliavin (Springer, Berlin, 1991), pp. 130–191

    Chapter  Google Scholar 

  45. F. Ronga, Schubert calculus according to Schubert (2006), arxiv:0608784

  46. Y. Ruan, G. Tian, Mathematical theory of quantum cohomology. J. Differ. Geom. 42(2), 259–367 (1995)

    Article  MathSciNet  Google Scholar 

  47. K. Ryan, On Schubert varieties in the flag manifold of \(SL(n,\mathbb{C})\). Math. Ann. 276, 205–224 (1987)

    Article  MathSciNet  Google Scholar 

  48. The Symmetric Group, vol. 2 (Springer, New York, 2001)

    Google Scholar 

  49. H. Schubert, Kalkül der abzählende Geometrie (Teubner Verlag, Leipzig, 1789.)

    Google Scholar 

  50. F. Sottile, Frontiers of reality in Schubert calculus. Bull. AMS 47(1), 31–71 (2010)

    Article  MathSciNet  Google Scholar 

  51. R. Stanley, Enumerative Combinatorics, vol. 2 (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  52. Adv. Math. Shifted tableaux and the projective representations of the symmetric group. 74(1), 87–134 (1989)

    Google Scholar 

  53. T. Tajakka, Cohomology of the Grassmannian. Master’s thesis, Aalto University, 2015

    Google Scholar 

  54. H. Thomas, A. Yong, A combinatorial rule for (co)minuscule Schubert calculus. Adv. Math. 222(2), 596–620 (2009)

    Article  MathSciNet  Google Scholar 

  55. J. Tymoczko, Decomposing Hessenberg varieties over classical groups. Ph.D. thesis, 2010, arxiv:0211226

  56. R. Vakil, A geometric Littlewood–Richardson rule. Ann. Math. 164(2), 371–422 (2006)

    Article  MathSciNet  Google Scholar 

  57. J.S. Wolper, A combinatorial approach to the singularities of Schubert varieties. Adv. Math. 76, 184–193 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks Jennifer Morse, François Bergeron, Franco Saliola, and Luc Lapointe for the invitation to teach a graduate workshop on Schubert calculus at the Center for Mathematics Research in Montreal, for which these extended notes were written. Thanks also to Sara Billey and the anonymous reviewer for their extensive feedback. Thanks to Helene Barcelo, Sean Griffin, Philippe Nadeau, Alex Woo, Jake Levinson, and Guanyu Li for further suggestions and comments. Finally, thanks to all of the participants at the graduate workshop for their comments, questions, and corrections that greatly improved this exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gillespie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s) and the Association for Women in Mathematics

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gillespie, M. (2019). Variations on a Theme of Schubert Calculus. In: Barcelo, H., Karaali, G., Orellana, R. (eds) Recent Trends in Algebraic Combinatorics. Association for Women in Mathematics Series, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-05141-9_4

Download citation

Publish with us

Policies and ethics