Skip to main content

Crystal Constructions in Number Theory

  • Chapter
  • First Online:
  • 855 Accesses

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 16))

Abstract

Weyl group multiple Dirichlet series and metaplectic Whittaker functions can be described in terms of crystal graphs. We present crystals as parameterized by Littelmann patterns, and we give a survey of purely combinatorial constructions of prime power coefficients of Weyl group multiple Dirichlet series and metaplectic Whittaker functions using the language of crystal graphs. We explore how the branching structure of crystals manifests in these constructions, and how it allows access to some intricate objects in number theory and related open questions using tools of algebraic combinatorics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In type D, the picture is more complex. An analogous construction gives a result slightly different from the one expected from the p-part. The phenomenon of (symmetric) multiple leaners accounts for this discrepancy; see Sect. 4.3.4 for details.

  2. 2.

    Note that in type B, we have the coefficient 1 instead of \(q^{a_{i,j}}.\) This discrepancy by a factor of q also present when comparing (47) with (46) or (48) can be eliminated with a change of variables in the polynomial \(P_{\lambda }({\mathbf {x}}).\)

References

  1. J. Beineke, B. Brubaker, S. Frechette, Weyl group multiple Dirichlet series of type C. Pac. J. Math. 254(1), 11–46 (2011). https://doi.org/10.2140/pjm.2011.254.11. MR2900659

    Article  MathSciNet  Google Scholar 

  2. J. Beineke, B. Brubaker, S. Frechette, A crystal definition for symplectic multiple Dirichlet series, Multiple Dirichlet series, L-functions and Automorphic Forms (Springer, Berlin, 2012), pp. 37–63

    Chapter  Google Scholar 

  3. A. Berenstein, A. Zelevinsky, String bases for quantum groups of type \(A_r\). Adv. Sov. Math. 16(1), 51–89 (1993)

    MathSciNet  MATH  Google Scholar 

  4. A. Berenstein, A. Zelevinsky, Tensor product multiplicities, canonical bases and totally positive varieties. Invent. Math. 143(1), 77–128 (2001). https://doi.org/10.1007/s002220000102. MR1802793

    Article  MathSciNet  Google Scholar 

  5. A. Berenstein, A. Zelevinsky et al., Canonical bases for the quantum group of type \({A}_r\) and piecewise-linear combinatorics. Duke Math. J. 82(3), 473–502 (1996)

    Article  MathSciNet  Google Scholar 

  6. N. Bourbaki, Lie Groups and Lie Algebras, Chapters 4–6, Elements of Mathematics (Springer, Berlin, 2002). Translated from the 1968 French original by Andrew Pressley. MR1890629 (2003a:17001)

    Book  Google Scholar 

  7. A. Braverman, D. Gaitsgory et al., Crystals via the affine Grassmannian. Duke Math. J. 107(3), 561–575 (2001)

    Article  MathSciNet  Google Scholar 

  8. B. Brubaker, S. Friedberg, Whittaker coefficients of metaplectic Eisenstein series. Geom. Funct. Anal. 25(4), 1180–1239 (2015)

    Article  MathSciNet  Google Scholar 

  9. B. Brubaker, A. Schultz, On Hamiltonians for six-vertex models (2016), arXiv:1606.00020

  10. B. Brubaker, V. Buciumas, D. Bump, A Yang-Baxter equation for metaplectic ice (2016), arXiv:1604.02206

  11. B. Brubaker, D. Bump, S. Friedberg, Weyl group multiple Dirichlet series II: the stable case. Invent. Math. 165(2), 325–355 (2006). MR2231959 (2007g:11056)

    Article  MathSciNet  Google Scholar 

  12. B. Brubaker, D. Bump, G. Chinta, S. Friedberg, J. Hoffstein, Weyl group multiple Dirichlet series I, in Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory (2006), pp. 91–114

    Google Scholar 

  13. B. Brubaker, D. Bump, G. Chinta, S. Friedberg, P.E. Gunnells, Metaplectic ice (2010), arXiv:1009.1741

  14. B. Brubaker, D. Bump, S. Friedberg, Weyl Group Multiple Dirichlet Series: Type A Combinatorial Theory, Annals of Mathematics Studies (Princeton University Press, Princeton, 2011). MR2791904

    MATH  Google Scholar 

  15. B. Brubaker, D. Bump, S. Friedberg, Weyl group multiple Dirichlet series, Eisenstein series and crystal bases. Ann. Math. 173(2), 1081–1120 (2011). https://doi.org/10.4007/annals.2011.173.2.13. MR2776371

    Article  MathSciNet  Google Scholar 

  16. B. Brubaker, D. Bump, G. Chinta, P.E. Gunnells, Metaplectic Whittaker functions and crystals of type B, in Multiple Dirichlet Series, L-functions and Automorphic Forms (2012), pp. 93–118

    Chapter  Google Scholar 

  17. D. Bump, Introduction: multiple Dirichlet series, in Multiple Dirichlet Series, L-functions and Automorphic Forms (2012), pp. 1–36

    Chapter  Google Scholar 

  18. D. Bump, A. Schilling, Crystal Bases: Representations and Combinatorics (World Scientific Publishing Company, Singapore, 2017)

    Book  Google Scholar 

  19. W. Casselman, J. Shalika, The unramified principal series of p-adic groups II: the Whittaker function. Compos. Math. 41(2), 207–231 (1980). MR581582 (83i:22027)

    MathSciNet  MATH  Google Scholar 

  20. G. Chinta, S. Friedberg, J. Hoffstein, Multiple Dirichlet series and automorphic forms. Proc. Symp. Pure Math. 75, 3–42 (2006)

    Article  MathSciNet  Google Scholar 

  21. G. Chinta, P.E. Gunnells, Constructing Weyl group multiple Dirichlet series. J. Am. Math. Soc. 23(1), 189–215 (2010). https://doi.org/10.1090/S0894-0347-09-00641-9. MR2552251 (2011g:11100)

    Article  MathSciNet  Google Scholar 

  22. G. Chinta, P.E. Gunnells, Littelmann patterns and Weyl group multiple Dirichlet series of type D, Multiple Dirichlet Series, L-functions and Automorphic Forms (Springer, Berlin, 2012), pp. 119–130

    Chapter  Google Scholar 

  23. G. Chinta, P.E. Gunnells, A. Puskás, Metaplectic Demazure, operators and Whittaker functions. Indiana Univ. Math. J. 66(3) (2014) arXiv:1408.5394

  24. G. Chinta, O. Offen, A metaplectic Casselman-Shalika formula for \(GL_r\). Am. J. Math. 135(2), 403–441 (2013)

    Article  Google Scholar 

  25. H. Davenport, H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen. J. Reine Angew. Math. 172(151–182), 198–201 (1934)

    MATH  Google Scholar 

  26. S. Friedberg, L. Zhang, Eisenstein series on covers of odd orthogonal groups. Am. J. Math. 137(4), 953–1011 (2015)

    Article  MathSciNet  Google Scholar 

  27. H. Friedlander, L. Gaudet, P.E. Gunnells, Crystal graphs, Tokuyama’s theorem, and the Gindikin-Karpeleviĉ formula for G2. J. Algebr. Comb. 41(4), 1089–1102 (2015). https://doi.org/10.1007/s10801-014-0567-9. MR3342714

    Article  Google Scholar 

  28. A.M. Hamel, R.C. King, Half-turn symmetric alternating sign matrices and Tokuyama type factorisation for orthogonal group characters. J. Combin. Theory Ser. A 131, 1–31 (2015). https://doi.org/10.1016/j.jcta.2014.11.005. MR3291473

    Article  MathSciNet  Google Scholar 

  29. J. Kamnitzer, Mirković-Vilonen cycles and polytopes. Ann. Math. 171, 245–294 (2010)

    Article  MathSciNet  Google Scholar 

  30. M. Kashiwara, Representations of Groups, (Banff, AB, 1994), vol. 16 (1995), pp. 155–197

    Google Scholar 

  31. M. Kashiwara, T. Nakashima, Crystal graphs for representations of the q-analogue of classical Lie algebras. J. Algebra 165(2), 295–345 (1994). MR1273277

    Article  MathSciNet  Google Scholar 

  32. V. Lakshmibai, C.S. Seshadri, Standard monomial theory, in Proceedings of the Hyderabad Conference on Algebraic Groups, Hyderabad, 1989 (1991), pp. 279–322. MR1131317

    Google Scholar 

  33. P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras. Invent. Math. 116(1), 329–346 (1994)

    Article  MathSciNet  Google Scholar 

  34. P. Littelmann, Cones, crystals, and patterns. Transform. Groups 3(2), 145–179 (1998)

    Article  MathSciNet  Google Scholar 

  35. G. Lusztig, Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3(2), 447–498 (1990)

    Article  MathSciNet  Google Scholar 

  36. G. Lusztig, Canonical bases arising from quantized enveloping algebras II. Prog. Theor. Phys. Suppl. 102, 175–201 (1991)

    Article  MathSciNet  Google Scholar 

  37. G. Lusztig, An algebraic-geometric parametrization of the canonical basis. Adv. Math. 120(1), 173–190 (1996)

    Article  MathSciNet  Google Scholar 

  38. H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. École Norm. Sup. 2(1), 1–62 (1969). MR0240214

    Article  MathSciNet  Google Scholar 

  39. J.P. McNamara, Metaplectic Whittaker functions and crystal bases. Duke Math. J. 156(1), 1–31 (2011). https://doi.org/10.1215/00127094-2010-064. MR2746386

    Article  MathSciNet  Google Scholar 

  40. P.J. McNamara, The metaplectic Casselman-Shalika formula. Trans. Am. Math. Soc. 368(4), 2913–2937 (2016)

    Article  MathSciNet  Google Scholar 

  41. J. Neukirch, Algebraic Number Theory, vol. 322 (Springer Science and Business Media, Berlin, 2013)

    MATH  Google Scholar 

  42. M. Patnaik, A. Puskás, Metaplectic covers of Kac-Moody groups and Whittaker functions (2017), arXiv:1703.05265

  43. M. Patnaik, A. Puskás, On Iwahori-Whittaker functions for metaplectic groups. Adv. Math. 313, 875–914 (2017)

    Article  MathSciNet  Google Scholar 

  44. A. Puskás, Whittaker functions on metaplectic covers of GL(r) (2016), arXiv:1605.05400

  45. T. Tokuyama, A generating function of strict Gel\(\prime \)fand patterns and some formulas on characters of general linear groups. J. Math. Soc. Jpn. 40(4), 671–685 (1988). https://doi.org/10.2969/jmsj/04040671. MR959093 (89m:22019)

    Article  MathSciNet  Google Scholar 

  46. K. Yamamoto, On a conjecture of Hasse concerning multiplicative relations of Gaussian sums. J. Comb. Theory 1(4), 476–489 (1966)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank the editors of this volume for giving me the opportunity to contribute. I am grateful to several people for helpful conversations and advice during the writing of this chapter, including Holley Friedlander, Paul E Gunnells, Dinakar Muthiah, and Manish Patnaik. During parts of the writing process, I was a postdoctoral fellow at the University of Alberta and a visiting assistant professor at the University of Massachusetts, Amherst, and I am grateful to both institutions. While at the University of Alberta, I was supported through Manish Patnaik’s Subbarao Professorship in number theory and an NSERC Discovery Grant. I also thank the referees for their insightful comments for the improvement of this chapter. In particular, I thank one of the referees for their comments on the connections to character theory and on Gauss sums.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Puskás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s) and the Association for Women in Mathematics

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Puskás, A. (2019). Crystal Constructions in Number Theory. In: Barcelo, H., Karaali, G., Orellana, R. (eds) Recent Trends in Algebraic Combinatorics. Association for Women in Mathematics Series, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-05141-9_10

Download citation

Publish with us

Policies and ethics