Skip to main content

From Complex Network to Skeleton: \( \varvec{m}_{\varvec{j}} \)-Modified Topology Potential for Node Importance Identification

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11323))

Included in the following conference series:

Abstract

Node importance identification is a crucial content in studying the substantial information and the inherent behaviors of complex network. On the basis of topological characteristics of nodes in complex network, we introduce the idea of topology potential from data field theory to capture the important nodes and view it as the skeleton nodes. Inspired by an assumption that different mass of node (\( m_{j} \) parameter) reflects different quality and interaction reliability over the network space. We propose TP-KS method that is an improved topology potential algorithm whose \( m_{j} \) is identified by k-shell centrality. The important nodes identified by TP-KS is ranked and verified by SIR epidemic spreading model. Through the theoretical and experimental analysis, it is proved that TP-KS can effectively extract the importance of nodes in complex network. The better results from TP-KS are also confirmed in both real-world networks and artificial random scale-free networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, D., Wang, S., Li, D.: Spatial Data Mining. Theory and Application. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48538-5

    Book  Google Scholar 

  2. Grady, D., Thiemann, C., Brockmann, D.: Robust classification of salient links in complex networks. Nat. Commun. 3(1), 864 (2012)

    Article  Google Scholar 

  3. Kumari, T., Gupta, A., Dixit, A.: Comparative study of page rank and weighted page rank algorithm, vol. 2, no. 2, p. 9 (2007)

    Google Scholar 

  4. Zhang, D., Gao, L.: Virtual network mapping through locality-aware topological potential and influence node ranking. Chin. J. Electron. 23(1), 61–64 (2014)

    Google Scholar 

  5. Wang, Y., Yang, J., Zhang, J., Zhang, J., Song, H., Li, Z.: A method of social network node preference evaluation based on the topology potential, pp. 223–230 (2015)

    Google Scholar 

  6. Sun, R., Luo, W.: Using topological potential method to evaluate node importance in public opinion. In: Presented at the 2017 International Conference on Electronic Industry and Automation, EIA 2017 (2017)

    Google Scholar 

  7. Han, Q., Wen, H., Ren, M., Wu, B., Li, S.: A topological potential weighted community-based recommendation trust model for P2P networks. Peer-Peer Netw. Appl. 8(6), 1048–1058 (2015)

    Article  Google Scholar 

  8. Lei, X., Zhang, Y., Cheng, S., Wu, F.-X., Pedrycz, W.: Topology potential based seed-growth method to identify protein complexes on dynamic PPI data. Inf. Sci. 425, 140–153 (2018)

    Article  MathSciNet  Google Scholar 

  9. Ding, X., Wang, Z., Chen, S., Huang, Y.: Community-based collaborative filtering recommendation algorithm. Int. J. Hybrid Inf. Technol. 8(2), 149–158 (2015)

    Article  Google Scholar 

  10. Han, Q., et al.: A P2P recommended trust nodes selection algorithm based on topological potential. In: 2013 IEEE Conference on Communications and Network Security, CNS, pp. 395–396 (2013)

    Google Scholar 

  11. Wang, Z., Zhao, Y., Chen, Z., Niu, Q.: An improved topology-potential-based community detection algorithm for complex network. Sci. World J. 2014, 1–7 (2014)

    Google Scholar 

  12. Wang, S., Gan, W., Li, D., Li, D.: Data field for hierarchical clustering. Int. J. Data Warehouse. Min. 7(4), 43–63 (2011)

    Article  Google Scholar 

  13. Han, Y., Li, D., Wang, T.: Identifying different community members in complex networks based on topology potential. Front. Comput. Sci. China 5(1), 87–99 (2011)

    Article  MathSciNet  Google Scholar 

  14. Xiao, L., Wang, S., Li, J.: Discovering community membership in biological networks with node topology potential. In: 2012 IEEE International Conference on Granular Computing, GrC, pp. 541–546 (2012)

    Google Scholar 

  15. Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  16. Network data. http://www-personal.umich.edu/~mejn/netdata/. Accessed 14 May 2018

  17. Alex Arenas datasets. http://deim.urv.cat/~alexandre.arenas/data/welcome.htm. Accessed 14 May 2018

  18. Tang, Y., Li, M., Wang, J., Pan, Y., Wu, F.-X.: CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems 127, 67–72 (2015)

    Article  Google Scholar 

  19. Lawyer, G.: Understanding the influence of all nodes in a network. Scientific reports, vol. 5, no. 1, August 2015

    Google Scholar 

  20. Kendall, M.G.: THE treatment of ties in ranking problems. Biometrika 33(3), 239–251 (1945)

    Article  MathSciNet  Google Scholar 

  21. Ma, L.-L., Ma, C., Zhang, H.-F., Wang, B.-H.: Identifying influential spreaders in complex networks based on gravity formula. Phys. Stat. Mech. Appl. 451, 205–212 (2016)

    Article  Google Scholar 

  22. Liu, J., Xiong, Q., Shi, W., Shi, X., Wang, K.: Evaluating the importance of nodes in complex networks. Phys. Stat. Mech. Appl. 452, 209–219 (2016)

    Article  Google Scholar 

  23. Wang, J., Li, M., Wang, H., Pan, Y.: Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(4), 1070–1080 (2012)

    Article  Google Scholar 

  24. Li, M., Wang, J., Chen, X., Wang, H., Pan, Y.: A local average connectivity-based method for identifying essential proteins from the network level. Comput. Biol. Chem. 35(3), 143–150 (2011)

    Article  MathSciNet  Google Scholar 

  25. Anthonisse, J.M.: The rush in a directed graph, January 1971

    Google Scholar 

  26. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966)

    Article  MathSciNet  Google Scholar 

  27. Tang, L., Liu, H.: Community detection and mining in social media. Synth. Lect. Data Min. Knowl. Discov. 2(1), 1–137 (2010)

    Article  MathSciNet  Google Scholar 

  28. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987)

    Article  Google Scholar 

  29. Estrada, E., Hatano, N.: Resistance distance, information centrality, node vulnerability and vibrations in complex networks. In: Estrada, E., Fox, M., Higham, D.J., Oppo, G.-L. (eds.) Network Science, pp. 13–29. Springer, London, London (2010). https://doi.org/10.1007/978-1-84996-396-1_2

    Chapter  Google Scholar 

  30. Estrada, E., Rodríguez-Velázquez, J.A.: Subgraph centrality in complex networks. Phys. Rev. E 71(5), 056103 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (No. 2016YFB0502600), The National Natural Science Fund of China (61472039), Beijing Institute of Technology International Cooperation Project (GZ2016085103), and Open Fund of Key Laboratory for National Geographic Census and Monitoring, National Administration of Surveying, Mapping and Geoinformation (2017NGCMZD03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanokwan Malang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, H., Malang, K., Lv, Y., Phaphuangwittayakul, A. (2018). From Complex Network to Skeleton: \( \varvec{m}_{\varvec{j}} \)-Modified Topology Potential for Node Importance Identification. In: Gan, G., Li, B., Li, X., Wang, S. (eds) Advanced Data Mining and Applications. ADMA 2018. Lecture Notes in Computer Science(), vol 11323. Springer, Cham. https://doi.org/10.1007/978-3-030-05090-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05090-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05089-4

  • Online ISBN: 978-3-030-05090-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics