Skip to main content

Discovery and Development of Microbial Biological Control Agents

  • Chapter
  • First Online:
Book cover Olfactory Concepts of Insect Control - Alternative to insecticides

Abstract

The use of microbial biocontrol agents as biopesticides has become an attractive insect pest management choice due to concerns regarding effects of chemical pesticide residues on human and animal health. In the biopesticide approach, an endemic microbial pathogen of an insect pest is identified that is capable of rapidly infecting and killing the target pest when the focal area is inundated. Initial screenings focus on finding aggressive pathogens of the target insect pest. The host range of these pathogens is then evaluated to ensure their safety. Formulations are subsequently developed to ensure effective application in the field. Once developed, the microbial biocontrol agent is used in a manner similar to a chemical pesticide. The mode of action, however, is such that the infective propagules produce multiple infections in the insect pest resulting in death. Because the biocontrol agent is restricted in its host range, only microbial propagules which contact and infect susceptible pests survive. Long-term persistence in the environment normally does not occur, so typically the inundation approach to microbial biocontrol does not produce multi-year control of the pest. Thus, seasonal application of the biocontrol agent is required, which provides the commercial incentive for development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesina MF, Lembke A, Costa R, Speksnijder A, Smalla K (2007) Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum: site-dependent composition and diversity revealed. Soil Biol Biochem 39:2818–2828

    Article  CAS  Google Scholar 

  • Adiyaman T, Schisler DA, Slininger PJ, Sloan JM, Jackson MA, Rooney AP (2011) Selection of biocontrol agents of pink rot based on efficacy and growth kinetics index rankings. Plant Dis 95:24–30

    Article  CAS  Google Scholar 

  • Aunsbjerg SD, Honoré AH, Marcussen J, Ebrahimi P, Vogensen FK, Benfeldt C, Skov T, Knøchel S (2015) Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt. Int J Food Microbiol 194:46–53

    Article  CAS  Google Scholar 

  • Behle RW, Tamez-Guerra P, McGuire MR (2006) Evaluating conditions for producing spray-dried formulations of Anagrapha falcifera nucleopolyhedroviruses (AfMNPV). Biocontrol Sci Tech 16:941–952

    Article  Google Scholar 

  • Behle RW, Jackson MA, Flor-Weiler LB (2013) Efficacy of a granular formulation containing Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) microsclerotia against nymphs of Ixodes scapularis (Acari: Ixodidae). J Econ Entomol 106:57–63

    Article  Google Scholar 

  • Berg G, Kurze S, Buchner A, Wellington EM, Smalla K (2000) Successful strategy for the selection of new strawberry-associated rhizobacteria antagonistic to Verticillium wilt. Can J Microbiol 46:1128–1137

    Article  CAS  Google Scholar 

  • Boyette CD, Jackson MA, Bryson CT, Hoagland RE, Connick WJ Jr, Daigle DJ (2007) Sesbania exaltata biocontrol with Colletotrichum truncatum microsclerotia formulated in ‘pesta’ granules. Biocontrol 52:413–426

    Article  Google Scholar 

  • Campbell R (1994) Biological control of soil-borne diseases: some present problems and different approaches. Crop Prot 13:4–13

    Article  Google Scholar 

  • Chaves-López C, Serio A, Gianotti A, Sacchetti G, Ndagijimana M, Ciccarone C, Stellarini A, Corsetti A, Paparella A (2015) Diversity of food-borne Bacillus volatile compounds and influence on fungal growth. J Appl Microbiol 119:487–499

    Article  Google Scholar 

  • Copping LG (2004) The manual of biocontrol agents, 3rd edn. British Crop Protection Council, Surrey

    Google Scholar 

  • Costa R, Gomes NCM, Peixoto RS, Rumjanek N, Berg G, Mendonça-Hagler LCS, Smalla K (2006) Diversity and antagonistic potential of Pseudomonas spp. associated to the rhizosphere of maize grown in a subtropical organic farm. Soil Biol Biochem 38:2434–2447

    Article  CAS  Google Scholar 

  • Daigle DJ, Connick WJ Jr, Boyette CD, Jackson MA (1998) Solid-state fermentation plus extrusion to make biopesticide granules. Biotechnol Tech 12:715–719

    Article  CAS  Google Scholar 

  • Dickie GA, Bell CR (1995) A full factorial analysis of nine factors influencing in vitro antagonistic screens for potential biocontrol agents. Can J Microbiol 41:284–293

    Article  CAS  Google Scholar 

  • Dunlap CA, Jackson MA, Wright MS (2007) A foam formulation of Paecilomyces fumosoroseus, an entomopathogenic biocontrol agent. Biocontrol Sci Tech 17:513–523

    Article  Google Scholar 

  • Enefiok JN, Hagedorn C (1978) Detection of antibiotic-producing Streptomyces inhabiting forest soils. Anitmicrob Agents Chemother 14:51–59

    Article  Google Scholar 

  • Faria M, Hajek AE, Wraight SP (2009) Imbibitional damage in conidia of the entomopathogenic fungi Beauveria bassiana, Metarhizium acridum, and Metarhizium anisopliae. Biol Control 51:346–354

    Article  Google Scholar 

  • Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  CAS  Google Scholar 

  • Forster WA, Kimberley MO, Zabkiewicz JA (2005) A universal spray droplet adhesion model. Trans Am Soc Agric Eng 48:1321–1330

    Article  Google Scholar 

  • Fu WY, Etzel MR (1995) Spray drying of Lactococcus lactis spp. lactis C2 and cellular injury. J Food Sci 60:195–200

    Article  CAS  Google Scholar 

  • Grimm C (2001) Economic feasibility of a small-scale production plant for entomopathogenic fungi in Nicaragua. Crop Prot 20:623–630

    Article  Google Scholar 

  • Hernández-León R, Rojas-Solís D, Contreras-Pérez M, Orozco-Mosqueda MDC, Macías-Rodríguez LI, Reyes-de la Cruz H, Valencia-Cantero E, Santoyo G (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:83–92

    Article  Google Scholar 

  • Jackson MA (2007) The biotechnology of producing and stabilizing living, microbial biological control agents for insect and weed control. In: Hou CT, Shaw FJ (eds) Biocatalysis and biotechnology: functional foods and industrial products. CRC Press, Boca Raton, pp 533–543

    Google Scholar 

  • Jackson MA, Jaronski ST (2009) Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycol Res 113:842–850

    Article  CAS  Google Scholar 

  • Jackson MA, Schisler DA (1994) Liquid culture production of microsclerotia of Colletotrichum truncatum for use as bioherbicidal propagules. Mycol Res 99:879–884

    Article  Google Scholar 

  • Jackson MA, Schisler DA (2002) Selecting fungal biocontrol agents amenable to production by liquid culture fermentation. In: Proceedings of the seventh biocontrol working group meeting, influence of a-biotic and biotic factors on biocontrol agents, IOBC WPRS bulletin, pp 387–391

    Google Scholar 

  • Jackson MA, Payne AR (2007) Evaluation of desiccation tolerance of blastospores of Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) using a lab-scale, air-drying chamber with controlled humidity. Biocontrol Sci Tech 17:709–719

    Article  Google Scholar 

  • Jackson MA, McGuire MR, Lacey LA, Wraight SP (1997) Liquid culture production of desiccation tolerant blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Mycol Res 101:35–41

    Article  Google Scholar 

  • Jackson MA, Dunlap CA, Jaronski ST (2010) Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. Biol Control 55:129–145

    Google Scholar 

  • Janisiewicz W (1996) Ecological diversity, niche overlap, and coexistence of antagonists used in developing mixtures for biocontrol of postharvest diseases of apples. Phytopathology 86:473–479

    Article  Google Scholar 

  • Jaronski ST, Jackson MA (2008) Efficacy of Metarhizium anisopliae microsclerotial granules. Biocontrol Sci Tech 18:849–863

    Article  Google Scholar 

  • Jin X, Custis DB (2013) Method for encapsulation of microparticles. U.S. Patent #8, 569,028. October 2013

    Google Scholar 

  • Jin X, Streett DA, Dunlap CA, Lyn ME (2008) Application of hydrophilic-lipophilic balance (HLB) number to optimize a compatible non-ionic surfactant for dried aerial conidia of Beauveria bassiana. Biol Control 46:226–233

    Article  CAS  Google Scholar 

  • Kassa A, Stephan D, Vidal S, Zimmermann G (2004) Production and processing of Metarhizium var. acridum submerged conidia for locust and grasshopper control. Mycol Res 108:93–100

    Article  Google Scholar 

  • Kelner A (1948) A method for investigating large microbial populations for antibiotic activity. J Bacteriol 56:157–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Knowles A (2008) Recent developments of safer formulations of agrochemicals. Environmentalist 28:35–44

    Article  Google Scholar 

  • Kobori NN, Mascarin GM, Jackson MA, Schisler DA (2015) Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani. Fungal Biol 119:179–190

    Article  CAS  Google Scholar 

  • Köhl J, Postma J, Nicot P, Ruocco M, Blum B (2011) Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biol Control 57:1–12

    Article  Google Scholar 

  • Leland JE, Behle RW (2005) Coating Beauveria bassiana with lignin for protection from solar radiation and effects on pathogenicity to Lygus lineolaris (Heteroptera: Miridae). Biocontrol Sci Tech 15:309–320

    Article  Google Scholar 

  • Lewis JA, Papavizas GC (1991) Biocontrol of plant diseases: the approach for tomorrow. Crop Prot 10:95–105

    Article  Google Scholar 

  • Lim HS, Kim YS, Kim SD (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant poot rot. Appl Environ Microbiol 57:510–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mary P, Ochin D, Tailliez R (1985) Rates of drying and survival of Rhizobium meliloti strains during storage at different relative humidities. Appl Environ Microbiol 50:207–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mascarin GM, Jackson MA, Behle RW, Kobori NN, Delalibera IJ (2016) Improved shelf life of dried Beauveria bassiana blastospores using convective drying and active packaging processes. Appl Microbiol Biotechnol 100:8359–8370

    Article  CAS  Google Scholar 

  • Pereira E, Santos A, Reis F, Tavares RM, Baptista P, Lino-Neto T, Almeida-Aguiar C (2013) A new effective assay to detect antimicrobial activity of filamentous fungi. Microbiol Res 168:1–5

    Article  CAS  Google Scholar 

  • Raza W, Yuan J, Ling N, Huang Q, Shen Q (2015) Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f. sp. niveum. Biol Control 80:89–95

    Article  CAS  Google Scholar 

  • Schisler DA, Jackson MA (1996) Germination of soil-incorporated microsclerotia of Colletotrichum truncatum and colonization of seedlings of the weed Sesbania exaltata. Can J Microbiol 42:1032–1038

    Article  CAS  Google Scholar 

  • Schisler DA, Khan NI, Boehm MJ, Lipps PE, Slininger PJ, Zhang S (2006) Selection and evaluation of the potential of choline-metabolizing microbial strains to reduce Fusarium head blight. Biol Control 39:497–506

    Article  Google Scholar 

  • Schisler DA, Core AB, Boehm MJ, Horst L, Krause C, Dunlap CA, Rooney AP (2014) Population dynamics of the Fusarium head blight biocontrol agent Cryptococcus flavescens OH 182.9 on wheat anthers and heads. Biol Control 70:17–27

    Article  Google Scholar 

  • Segarra G, Puopolo G, Giovannini O, Pertot I (2015) Stepwise flow diagram for the development of formulations of non spore-forming bacteria against foliar pathogens: the case of Lysobacter capsici AZ78. J Biotechnol 216:56–64

    Article  CAS  Google Scholar 

  • Shearer JF, Jackson MA (2006) Liquid culturing of microsclerotia of Mycoleptodiscus terrestris, a potential biological control agent for the management of hydrilla. Biol Control 38:98–306

    Article  Google Scholar 

  • Slininger PJ, Schisler DA (2013) High-throughput assay for optimising microbial biological control agent production and delivery. Biocontrol Sci Tech 23:920–943

    Article  Google Scholar 

  • Stowell LJ (1991) Submerged fermentation of biological herbicides. In: TeBeest DO (ed) Microbial control of weeds. Chapman & Hall, New York, pp 225–261

    Chapter  Google Scholar 

  • Stowell LJ, Nette K, Heath B, Shutter R (1989) Fermentation alternatives for commercial production of a mycoherbicide. In: Demain AL, Somkuti GA, Hunter-Cevera JC, Rossmore HW (eds) Novel microbial products for medicine and agriculture. Elsevier, Amsterdam, pp 219–227

    Google Scholar 

  • Vega F, Jackson MA, Mercadier G, Poprawski T (2003) The impact of nutrition on spore yields for various fungal entomopathogens in liquid culture. World J Microbiol Biotechnol 19:363–368

    Article  CAS  Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzon A, Ownley BH, Pell JK, Rangel EN, Roy HE (2009) Fungal entomopathogens: new insights into their ecology. Fungal Ecol 2:149–159

    Article  Google Scholar 

  • Wilson M, Lindow SE (1994) Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl Environ Microbiol 60:4468–4477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wraight SP, Jackson MA, de Kock SL (2001) Production, stabilization, and formulation of fungal biocontrol agents. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CABI Publishing, Wallingford, pp 253–288

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro P. Rooney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG (outside the USA)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rooney, A.P., Jackson, M.A., Dunlap, C.A., Behle, R.W., Muturi, E.J. (2019). Discovery and Development of Microbial Biological Control Agents. In: Picimbon, JF. (eds) Olfactory Concepts of Insect Control - Alternative to insecticides. Springer, Cham. https://doi.org/10.1007/978-3-030-05060-3_4

Download citation

Publish with us

Policies and ethics