Skip to main content

Efficient and Secure Outsourced Linear Regression

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11336))

Abstract

The linear regression, as a classical machine learning algorithm, is often used to be a predictor. In the era of big data, the data owner can outsource their linear regression task and data to the cloud server, which has powerful calculation and storage resources. However, outsourcing data may break the privacy of the data. It is a well-known method to encrypt them prior to uploading to the cloud by using the homomorphic encryption (HE). Nevertheless, it is a difficult problem to apply the linear regression protocol in the encrypted domain. With this observation, we propose an efficient and secure linear regression protocol over outsourced encrypted data by using the vector HE, named ESLR, and in our protocol, we further present a privacy-preserving gradient descent method. Security analysis shows that our protocol can guarantee the confidentiality of data. And compared to the linear regression over plaintexts, our proposal can achieve almost the same accuracy and efficiency over ciphertexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  2. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for securemulti-party computation. In: Proceedings of the 15th ACM Conference on Computer and Communications Security, pp. 257–266. ACM (2008)

    Google Scholar 

  3. Dankar, F.K., El Emam, K.: The application of differential privacy to healthdata. In: Proceedings of the 2012 Joint EDBT/ICDT Workshops, pp. 158–166. ACM (2012)

    Google Scholar 

  4. Centers for Disease Control and Prevention, et al.: HIPAA privacy rule and public health. guidance from CDC and the us department of health and human services. MMWR Morb. Mortal. Wkly. Rep. 52(Suppl. 1), 1–17 (2003)

    Google Scholar 

  5. Du, W., Atallah, M.J.: Secure multi-party computation problems and their applications: a review and open problems. In: Proceedings of the 2001 Workshop on New Security Paradigms, pp. 13–22. ACM (2001)

    Google Scholar 

  6. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  MATH  Google Scholar 

  7. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends® Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Fletcher, R., Powell, M.J.: A rapidly convergent descent method for minimization. Comput. J. 6(2), 163–168 (1963)

    Article  MathSciNet  Google Scholar 

  9. Goldreich, O.: Secure multi-party computation. Manuscript. Preliminary version, pp. 86–97 (1998)

    Google Scholar 

  10. Halevi, S., Shoup, V.: Helib (2014). Retrieved from HELib: https://github.com.shaih/HElib

  11. Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Discov. 2(3), 283–304 (1998)

    Article  MathSciNet  Google Scholar 

  12. Lee, L.M., Gostin, L.O.: Ethical collection, storage, and use of public health data: a proposal for a national privacy protection. Jama 302(1), 82–84 (2009)

    Article  Google Scholar 

  13. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2007, pp. 94–103. IEEE (2007)

    Google Scholar 

  14. Regev, O.: On lattices, learning with errors, random linear codes, andcryptography. J. ACM 56(6), 1–40 (2009)

    Article  Google Scholar 

  15. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2

    Chapter  Google Scholar 

  16. Wold, S., Ruhe, A., Wold, H., Dunn III, W.: The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput. 5(3), 735–743 (1984)

    Article  Google Scholar 

  17. Zhou, H., Wornell, G.: Efficient homomorphic encryption on integer vectors and its applications. In: Information Theory and Applications Workshop (ITA), 2014, pp. 1–9. IEEE (2014)

    Google Scholar 

Download references

Acknowledgement

Our work is supported by of the National Key Research and Development Program of China (2017YFB0802003), the National Natural Science Foundation of China (U1633114) and the Sichuan Science and Technology Program (2018GZ0202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haomiao Yang , Weichao He or Qixian Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, H., He, W., Zhou, Q., Li, H. (2018). Efficient and Secure Outsourced Linear Regression. In: Vaidya, J., Li, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science(), vol 11336. Springer, Cham. https://doi.org/10.1007/978-3-030-05057-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05057-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05056-6

  • Online ISBN: 978-3-030-05057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics