Skip to main content

Reducing Foodborne Pathogens in Organic Poultry: Challenges and Opportunities

  • Chapter
  • First Online:
Food Safety in Poultry Meat Production

Part of the book series: Food Microbiology and Food Safety ((PRACT))

Abstract

Organic poultry production is becoming increasingly popular in the United States with a steady increase in the sales of organic meat and poultry. Although organic food products may represent a safer alternative with regards to chemical contamination of the product, control of foodborne pathogens in organic poultry is particularly important because consumers of these products perceive them as being safer and choose them for children, the elderly and immunocompromised people. Salmonella and Campylobacter are two major foodborne pathogens epidemiologically linked to the consumption of chicken and eggs which together account for most of the laboratory-confirmed cases of bacterial gastroenteritis in the United States. Although the conventional poultry industry is equipped with several interventions to control these pathogens on meat and eggs, organic poultry producers have access to only a limited number of antibacterials (eg. weak organic acids, chlorine, oxidizing compounds) that are safe, effective and approved for improving the product safety and shelf-life of poultry meat and/or eggs. This is a concern for organic producers because they cannot control proper cooking and other food safety practices of consumers once the poultry products are sold. This chapter discusses the food safety challenges and potential strategies to reduce pathogens both in preharvest and postharvest conditions while conforming to organically approved methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar, V. F., Donoghue, A. M., Arsi, K., Reyes-Herrera, I., Metcalf, J. H., de los Santos, F. S., et al. (2013). Targeting motility properties of bacteria in the development of probiotic cultures against Campylobacter jejuni in broiler chickens. Foodborne Pathogens and Disease, 10(5), 435–441.

    Article  PubMed  Google Scholar 

  • Andreatti Filho, R. L., Silva, E. N. D., Ribeiro, A. R., Kondo, N., & Curi, P. R. (2000). Use of anaerobic cecal microflora, lactose and acetic acid for the protection of broiler chicks against experimental infection with Salmonella typhimurium and Salmonella enteritidis. Brazilian Journal of Microbiology, 31(2), 107–112.

    Article  CAS  Google Scholar 

  • Andrews, H. L., & Baumler, A. J. (2005). Salmonella species. In P. M. Fratamico, A. K. Bhunia, & J. L. Smith (Eds.), Foodborne pathogens: Microbiology and molecular biology (pp. 327–339). Norfolk, UK: Caister Academic Press.

    Google Scholar 

  • Anonymous. (2011). Six ill in Minnesota Salmonella egg outbreak. Retrieved October 2017, from http://www.foodsafetynews.com/2011/10/six-ill-in-minnesota-salmonella-egg-outbreak/#.WH1CgVMrIUY

  • Anonymous. (2014). Organic eggs recalled for Salmonella. Retrieved October 2017, from https://foodpoisoningbulletin.com/2014/organic-eggs-recalled-for-salmonella/

  • Anonymous. (2016). Good earth eggs recalled; linked to Salmonella outbreak. Retrieved October 2017, from https://foodpoisoningbulletin.com/2016/good-earth-eggs-recalled-linked-to-salmonella-outbreak/

  • Arsi, K., Donoghue, A. M., Venkitanarayanan, K., Kollanoor-Johny, A., Fanatico, A. C., Blore, P. J., et al. (2014). The efficacy of the natural plant extracts, thymol and carvacrol against Campylobacter colonization in broiler chickens. Journal of Food Safety, 34(4), 321–325.

    Article  CAS  Google Scholar 

  • Arsi, K., Donoghue, A. M., Woo-Ming, A., Blore, P. J., & Donoghue, D. J. (2015a). The efficacy of selected probiotic and prebiotic combinations in reducing Campylobacter colonization in broiler chickens. Journal of Applied Poultry Research, 24(3), 327–334.

    Article  CAS  Google Scholar 

  • Arsi, K., Donoghue, A. M., Woo-Ming, A., Blore, P. J., & Donoghue, D. J. (2015b). Intracloacal inoculation, an effective screening method for determining the efficacy of probiotic bacterial isolates against Campylobacter colonization in broiler chickens. Journal of Food Protection, 78(1), 209–213.

    Article  CAS  PubMed  Google Scholar 

  • Arsi, K., Donoghue, A. M., Upadhyaya, I., Upadhyay, A., Wagle, B. R., Shrestha, S., et al. (2017). Alternatives to antibiotics: Novel strategies to reduce foodborne pathogens in organic poultry. In: Proceedings of the Midwest poultry federation convention.

    Google Scholar 

  • Ayoola, G. A., Lawore, F. M., Adelowotan, T., Aibinu, I. E., Adenipekun, E., Coker, H. A. B., et al. (2008). Chemical analysis and antimicrobial activity of the essential oil of Syzygium aromaticum (clove). African Journal of Microbiology Research, 2(7), 162–166.

    Google Scholar 

  • Bailey, J. S., & Cosby, D. E. (2005). Salmonella prevalence in free-range and certified organic chickens. Journal of Food Protection, 68(11), 2451–2453.

    Article  CAS  PubMed  Google Scholar 

  • Barrow, P. A. (1992). Probiotics for chickens. In R. Fuller (Ed.), Probiotics: The scientific basis (pp. 225–257). London: Chapman and Hall.

    Chapter  Google Scholar 

  • Baskaran, S. A., Upadhyay, A., Kollanoor-Johny, A., Upadhyaya, I., Mooyottu, S., Roshni Amalaradjou, M. A., et al. (2013). Efficacy of plant-derived antimicrobials as antimicrobial wash treatments for reducing enterohemorrhagic Escherichia Coli O157:H7 on apples. Journal of Food Science, 78(9), M1399.

    Article  CAS  PubMed  Google Scholar 

  • Baskaran, S. A., Kollanoor-Johny, A., Nair, M. S., & Venkitanarayanan, K. (2016). Efficacy of plant-derived antimicrobials in controlling enterohemorrhagic Escherichia coli virulence in vitro. Journal of Food Protection, 79(11), 1965–1970.

    Article  CAS  PubMed  Google Scholar 

  • Baurhoo, B., Letellier, A., Zhao, X., & Ruiz-Feria, C. A. (2007a). Cecal populations of Lactobacilli and Bifidobacteria and Escherichia coli populations after in vivo Escherichia coli challenge in birds fed diets with purified lignin or mannanoligosaccharides. Poultry Science, 86(12), 2509–2516.

    Article  CAS  PubMed  Google Scholar 

  • Baurhoo, B., Phillip, L., & Ruiz-Feria, C. A. (2007b). Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poultry Science, 86(6), 1070–1078.

    Article  CAS  PubMed  Google Scholar 

  • Baurhoo, B., Ferket, P. R., & Zhao, X. (2009). Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers. Poultry Science, 88(11), 2262–2272.

    Article  CAS  PubMed  Google Scholar 

  • Beretz, A., Anton, R., & Stoclet, J. C. (1978). Flavonoid compounds are potent inhibitors of cyclic AMP phosphodiesterase. Cellular and Molecular Life Sciences, 34(8), 1054–1055.

    Article  CAS  Google Scholar 

  • Berg, C. (2002). Health and welfare in organic poultry production. Acta Veterinaria Scandinavica, 43(1), S37.

    Article  Google Scholar 

  • Bergsson, G., Arnfinnsson, J., Karlsson, S. M., Steingrímsson, Ó., & Thormar, H. (1998). In vitro inactivation of Chlamydia trachomatis by fatty acids and monoglycerides. Antimicrobial Agents and Chemotherapy, 42(9), 2290–2294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaszyk, M., & Holley, R. A. (1998). Interaction of monolaurin, eugenol and sodium citrate on growth of common meat spoilage and pathogenic organisms. International Journal of Food Microbiology, 39(3), 175–183.

    Article  CAS  PubMed  Google Scholar 

  • Bowles, B. L., & Miller, A. J. (1993). Antibotulinal properties of selected aromatic and aliphatic ketones. Journal of Food Protection, 56(9), 795–800.

    Article  CAS  Google Scholar 

  • Brown, L. G., Khargonekar, S., Bushnell, L., & Environmental Health Specialists Network Working Group. (2013). Frequency of inadequate chicken cross-contamination prevention and cooking practices in restaurants. Journal of Food Protection, 76(12), 2141–2145.

    Article  PubMed Central  Google Scholar 

  • Brul, S., & Coote, P. (1999). Preservative agents in foods: Mode of action and microbial resistance mechanisms. International Journal of Food Microbiology, 50(1), 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Burley, H. K., Patterson, P. H., & Anderson, K. E. (2015). Alternative ingredients for providing adequate methionine in organic poultry diets in the United States with limited synthetic amino acid use. World’s Poultry Science Journal, 71(3), 493–504.

    Article  Google Scholar 

  • Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods—A review. International Journal of Food Microbiology, 94(3), 223–253.

    Article  CAS  PubMed  Google Scholar 

  • CDC. (2015). Centers for Disease Control and Prevention. Food safety – Foodborne germs and illnesses. Retrieved October 2017, from https://www.cdc.gov/foodsafety/foodborne-germs.html

  • CDC. (2017a). Centers for Disease Control and Prevention. Campylobacter, Salmonella led bacterial foodborne illnesses in 2016. Retrieved October 2017, from https://www.cdc.gov/media/releases/2017/p0420-campylobacter-salmonella.html

  • CDC. (2017b). Centers for Disease Control and Prevention. Salmonella: Multistate outbreaks of human Salmonella infections linked to live poultry in backyard flocks, 2017. Retrieved October 2017, from https://www.cdc.gov/salmonella/live-poultry-06-17/index.html

  • Chaveerach, P., Keuzenkamp, D. A., Urlings, H. A., Lipman, L. J., & Van Knapen, F. (2002). In vitro study on the effect of organic acids on Campylobacter jejuni/coli populations in mixtures of water and feed. Poultry Science, 81(5), 621–628.

    Article  CAS  PubMed  Google Scholar 

  • Chaveerach, P., Lipman, L. J. A., & Van Knapen, F. (2004). Antagonistic activities of several bacteria on in vitro growth of 10 strains of Campylobacter jejuni/coli. International Journal of Food Microbiology, 90(1), 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Cobanoglu, F., Kucukyilmaz, K., Cinar, M., Bozkurt, M., Catli, A. U., & Bintas, E. (2014). Comparing the profitability of organic and conventional broiler production. Revista Brasileira de Ciência Avícola, 16(1), 89–95.

    Article  Google Scholar 

  • Corrier, D. E., Hinton Jr., A., Ziprin, R. L., & DeLoach, J. R. (1990a). Effect of dietary lactose on Salmonella colonization of market-age broiler chickens. Avian Diseases, 34, 668–676.

    Article  CAS  PubMed  Google Scholar 

  • Corrier, D. E., Hinton Jr., A., Ziprin, R. L., Beier, R. C., & DeLoach, J. R. (1990b). Effect of dietary lactose on cecal pH, bacteriostatic volatile fatty acids, and Salmonella typhimurium colonization of broiler chicks. Avian Diseases, 34, 617–625.

    Article  CAS  PubMed  Google Scholar 

  • Cox, S. D., & Markham, J. L. (2007). Susceptibility and intrinsic tolerance of Pseudomonas aeruginosa to selected plant volatile compounds. Journal of Applied Microbiology, 103(4), 930–936.

    Article  CAS  PubMed  Google Scholar 

  • Cui, S., Ge, B., Zheng, J., & Meng, J. (2005). Prevalence and antimicrobial resistance of Campylobacter spp. and Salmonella serovars in organic chickens from Maryland retail stores. Applied and Environmental Microbiology, 71(7), 4108–4111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darre, M. J., Kollanoor-Johny, A., Venkitanarayanan, K., & Upadhyaya, I. (2014). Practical implications of plant-derived antimicrobials in poultry diets for the control of Salmonella enteritidis. Journal of Applied Poultry Research, 23(2), 340–344.

    Article  Google Scholar 

  • DeLoach, J. R., Oyofo, B. A., Corrier, D. E., Kubena, L. F., Ziprin, R. L., & Norman, J. O. (1990). Reduction of Salmonella typhimurium concentration in broiler chickens by milk or whey. Avian Diseases, 34, 389–392.

    Article  CAS  PubMed  Google Scholar 

  • Donato, F., & Zani, C. (2010). Chronic exposure to organochlorine compounds and health effects in adults: Cancer, non-Hodgkin lymphoma. Review of literature. Annali di Igiene: Medicina Preventiva e di Comunita, 22(4), 357–367.

    CAS  Google Scholar 

  • Dore, M. H. (2015). Threats to human health: Use of chlorine, an obsolete treatment technology. In Global drinking water management and conservation (pp. 197–212). Cham, Switzerland: Springer.

    Google Scholar 

  • Dorman, H. J. D., & Deans, S. G. (2000). Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308–316.

    Article  CAS  PubMed  Google Scholar 

  • Engvall, A. (2002). May organically farmed animals pose a risk for Campylobacter infections in humans? Acta Veterinaria Scandinavica, 43(1), S85.

    Article  Google Scholar 

  • Fanatico, A. (2006). Organic poultry production in the United States. ATTRA. NCAT. Retrieved October 2017, from www.attra.ncat.org/attra-pub/pPDF/organicpoultry.pdf

  • Fanatico, A. C., Owens, C. M., & Emmert, J. L. (2009). Organic poultry production in the United States: Broilers. Journal of Applied Poultry Research, 18(2), 355–366.

    Article  Google Scholar 

  • FDA. (2011). Salmonella illnesses linked to organic eggs consumers, food preparers reminded to cook eggs thoroughly. Retrieved October 2017, from http://www.fda.gov/Safety/Recalls/ucm276901.htm

  • FDA. (2013). U.S. Food and Drug Administration: Everything added to food in the United States (EAFUS). Retrieved October 2017, from https://www.accessdata.fda.gov/scripts/fcn/fcnNavigation.cfm?filter=89-86-1&sortColumn=&rpt=eafusListing

  • FDA. (2016). Good earth egg company voluntarily recalls shell eggs because of a possible health risk. Retrieved October 2017, from http://www.fda.gov/Safety/Recalls/ucm523727.htm?source=govdelivery&utm_medium=email&utm_source=govdelivery

  • FDA. (2017). U.S. Food and Drug Administration: CFR - Code of Federal Regulations Title 21. Retrieved October 2017, from https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.20

  • Federal Register. (2017). National Organic Program (NOP); Organic livestock and poultry practices. Retrieved October 2017, from https://www.gpo.gov/fdsys/pkg/FR-2017-01-19/pdf/2017-00888.pdf

  • Fooks, L. J., & Gibson, G. R. (2002). Probiotics as modulators of the gut flora. British Journal of Nutrition, 88(S1), s39–s49.

    Article  CAS  PubMed  Google Scholar 

  • Fooks, L. J., Fuller, R., & Gibson, G. R. (1999). Prebiotics, probiotics and human gut microbiology. International Dairy Journal, 9(1), 53–61.

    Article  Google Scholar 

  • Friedman, M. (2014). Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices. Journal of Agricultural and Food Chemistry, 62(31), 7652–7670.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, M., Henika, P. R., & Mandrell, R. E. (2003). Antibacterial activities of phenolic benzaldehydes and benzoic acids against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal of Food Protection, 66(10), 1811–1821.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, M., Buick, R., & Elliott, C. T. (2004). Antibacterial activities of naturally occurring compounds against antibiotic-resistant Bacillus cereus vegetative cells and spores, Escherichia coli, and Staphylococcus aureus. Journal of Food Protection, 67(8), 1774–1778.

    Article  CAS  PubMed  Google Scholar 

  • FSIS. (2015). Draft FSIS compliance guideline for controlling Salmonella and Campylobacter in raw poultry. Retrieved November 2017, from https://www.fsis.usda.gov/wps/wcm/connect/6732c082-af40-415e-9b57-90533ea4c252/Controlling-Salmonella-Campylobacter-Poultry-2015.pdf?MOD=AJPERES

  • Fuller, R. (1989). Probiotics in man and animals. The Journal of Applied Bacteriology, 66(5), 365–378.

    Article  CAS  PubMed  Google Scholar 

  • Gantois, I., Ducatelle, R., Pasmans, F., Haesebrouck, F., Gast, R., Humphrey, T. J., et al. (2009). Mechanisms of egg contamination by Salmonella enteritidis. FEMS Microbiology Reviews, 33(4), 718–738.

    Article  CAS  PubMed  Google Scholar 

  • Gast, R. K., & Beard, C. W. (1990). Production of Salmonella enteritidis-contaminated eggs by experimentally infected hens. Avian Diseases, 34, 438–446.

    Article  CAS  PubMed  Google Scholar 

  • Gauthier, R. (2003). Poultry therapeutics: New alternatives in nuevas alternativas en therapeutica aviar. In XVIII Latin American poultry congress 2003, Bolivia.

    Google Scholar 

  • Geissman, T. A. (1963). Flavonoid compounds, tannins, lignins and related compounds. In M. Florkin & E. H. Stotz (Eds.), Pyrrole pigments, isoprenoid compounds and phenolic plant constituents (Vol. 9, p. 265). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Gibson, G. R., & Fuller, R. (2000). Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use. The Journal of Nutrition, 130(2), 391S–395S.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. The Journal of Nutrition, 125(6), 1401.

    Article  CAS  PubMed  Google Scholar 

  • Gill, A. O., & Holley, R. A. (2004). Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Applied and Environmental Microbiology, 70(10), 5750–5755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glos, K. (2011). Humane and healthy poultry production: A manual for organic growers. White River Junction, VT: Chelsea Green Publishing.

    Google Scholar 

  • Hargis, B. M., Caldwell, D. J., Byrd, J. A., Corrier, D. E., & Stanker, L. H. (1998). Preharvest crop contamination and Salmonella recovery from broiler carcasses at processing. In Proceedings, international symposium on food-borne Salmonella in poultry, Baltimore, MD, July 25–26, 1998 (pp. 220–231). American Association of Avian Pathologists.

    Google Scholar 

  • Harper, G. C., & Makatouni, A. (2002). Consumer perception of organic food production and farm animal welfare. British Food Journal, 104(3/4/5), 287–299.

    Article  Google Scholar 

  • Hinton Jr., A., Corrier, D. E., Spates, G. E., Norman, J. O., Ziprin, R. L., Beier, R. C., et al. (1990). Biological control of Salmonella typhimurium in young chickens. Avian Diseases, 34, 626–633.

    Article  PubMed  Google Scholar 

  • Hirazawa, N., Oshima, S. I., & Hata, K. (2001a). In vitro assessment of the antiparasitic effect of caprylic acid against several fish parasites. Aquaculture, 200(3), 251–258.

    Article  CAS  Google Scholar 

  • Hirazawa, N., Oshima, S. I., Hara, T., Mitsuboshi, T., & Hata, K. (2001b). Antiparasitic effect of medium-chain fatty acids against the ciliate Cryptocaryon irritans infestation in the red sea bream Pagrus major. Aquaculture, 198(3), 219–228.

    Article  CAS  Google Scholar 

  • IFOAM. (2009). IFOAM basic standards. International Federation of Organic Movements, Tholey-theley. Retrieved October 2017, from www.ifoam.org/standard/basics

  • Jacob, M. E., Fox, J. T., Reinstein, S. L., & Nagaraja, T. G. (2008). Antimicrobial susceptibility of foodborne pathogens in organic or natural production systems: An overview. Foodborne Pathogens and Disease, 5(6), 721–730.

    Article  PubMed  Google Scholar 

  • Jamroz, D., Wiliczkiewicz, A., Orda, J., Wertelecki, T., & Skorupinska, J. (2004). Response of broiler chickens to the diets supplemented with feeding antibiotic or mannanoligosaccharides. Electronic Journal of Polish Agricultural Universities Series Animal Husbandry, 7(2), 1–6.

    Google Scholar 

  • Jensen, R. G. (2002). The composition of bovine milk lipids: January 1995 to December 2000. Journal of Dairy Science, 85(2), 295–350.

    Article  CAS  PubMed  Google Scholar 

  • Johny, A. K., Darre, M. J., Hoagland, T. A., Schreiber, D. T., Donoghue, A. M., Donoghue, D. J., et al. (2008). Antibacterial effect of trans-cinnamaldehyde on Salmonella enteritidis and Campylobacter jejuni in chicken drinking water. Journal of Applied Poultry Research, 17(4), 490–497.

    Article  Google Scholar 

  • Johny, A. K., Baskaran, S. A., Charles, A. S., Amalaradjou, M. A. R., Darre, M. J., Khan, M. I., et al. (2009). Prophylactic supplementation of caprylic acid in feed reduces Salmonella enteritidis colonization in commercial broiler chicks. Journal of Food Protection, 72(4), 722–727.

    Article  CAS  PubMed  Google Scholar 

  • Kijlstra, A., & Eijck, I. A. J. M. (2006). Animal health in organic livestock production systems: A review. NJAS - Wageningen Journal of Life Sciences, 54(1), 77–94.

    Article  Google Scholar 

  • Kollanoor Johny, A., Darre, M. J., Donoghue, A. M., Donoghue, D. J., & Venkitanarayanan, K. (2010). Antibacterial effect of trans-cinnamaldehyde, eugenol, carvacrol, and thymol on Salmonella enteritidis and Campylobacter jejuni in chicken cecal contents in vitro. Journal of Applied Poultry Research, 19(3), 237–244.

    Article  CAS  Google Scholar 

  • Kollanoor Johny, A., Mattson, T., Baskaran, S. A., Amalaradjou, M. A., Babapoor, S., March, B., et al. (2012). Reduction of Salmonella enterica serovar enteritidis colonization in 20-day-old broiler chickens by the plant-derived compounds trans-cinnamaldehyde and eugenol. Applied and Environmental Microbiology, 78(8), 2981–2987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, J. (2009). Novel approaches for Campylobacter control in poultry. Foodborne Pathogens and Disease, 6(7), 755–765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loretz, M., Stephan, R., & Zweifel, C. (2010). Antimicrobial activity of decontamination treatments for poultry carcasses: A literature survey. Food Control, 21(6), 791–804.

    Article  CAS  Google Scholar 

  • Lund, V. (2006). Natural living—A precondition for animal welfare in organic farming. Livestock Science, 100(2), 71–83.

    Article  Google Scholar 

  • Lund, V., & Algers, B. (2003). Research on animal health and welfare in organic farming—A literature review. Livestock Production Science, 80(1), 55–68.

    Article  Google Scholar 

  • Macfarlane, S. M. G. T., Macfarlane, G. T., & Cummings, J. T. (2006). Prebiotics in the gastrointestinal tract. Alimentary Pharmacology & Therapeutics, 24(5), 701–714.

    Article  CAS  Google Scholar 

  • Magkos, F., Arvaniti, F., & Zampelas, A. (2003). Putting the safety of organic food into perspective. Nutrition Research Reviews, 16(2), 211–222.

    Article  PubMed  Google Scholar 

  • Marchese, A., Orhan, I. E., Daglia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S. F., et al. (2016). Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chemistry, 210, 402–414.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, T. E., Johny, A. K., Amalaradjou, M. A. R., More, K., Schreiber, D. T., Patel, J., et al. (2011). Inactivation of Salmonella spp. on tomatoes by plant molecules. International Journal of Food Microbiology, 144(3), 464–468.

    Article  CAS  PubMed  Google Scholar 

  • McReynolds, J. L., Byrd, J. A., Genovese, K. J., Poole, T. L., Duke, S. E., Farnell, M. B., et al. (2007). Dietary lactose and its effect on the disease condition of necrotic enteritis. Poultry Science, 86(8), 1656–1661.

    Article  CAS  PubMed  Google Scholar 

  • Messens, W., Grijspeerdt, K., & Herman, L. (2005). Eggshell penetration by Salmonella: A review. World's Poultry Science Journal, 61(1), 71–86.

    Article  Google Scholar 

  • Messens, W., Grijspeerdt, K., & Herman, L. (2006). Eggshell penetration of hen’s eggs by Salmonella enterica serovar enteritidis upon various storage conditions. British Poultry Science, 47(5), 554–560.

    Article  CAS  PubMed  Google Scholar 

  • Mitsch, P., Zitterl-Eglseer, K., Köhler, B., Gabler, C., Losa, R., & Zimpernik, I. (2004). The effect of two different blends of essential oil components on the proliferation of Clostridium perfringens in the intestines of broiler chickens. Poultry Science, 83(4), 669–675.

    Article  CAS  PubMed  Google Scholar 

  • Nachamkin, I., & Guerry, P. (2005). Campylobacter infections. In P. M. Fratamico, A. K. Bhunia, & J. L. Smith (Eds.), Foodborne pathogens: Microbiology and molecular biology (pp. 285–293). Norfolk, UK: Caister Academic Press.

    Google Scholar 

  • Nair, M. K. M., Joy, J., Vasudevan, P., Hinckley, L., Hoagland, T. A., & Venkitanarayanan, K. S. (2005). Antibacterial effect of caprylic acid and monocaprylin on major bacterial mastitis pathogens. Journal of Dairy Science, 88(10), 3488–3495.

    Article  CAS  PubMed  Google Scholar 

  • Nisbet, D. J., Corrier, D. E., Scanlan, C. M., Hollister, A. G., Beier, R. C., & Deloach, J. R. (1994). Effect of dietary lactose and cell concentration on the ability of a continuous-flow-derived bacterial culture to control Salmonella cecal colonization in broiler chickens. Poultry Science, 73(1), 56–62.

    Article  CAS  PubMed  Google Scholar 

  • NOC. (2014). National Organic Coalition. Comments to the livestock sub-committee. Retrieved October 2017, from http://www.nationalorganiccoalition.org/_literature_122844/NOC_NOSB_Comments-Livestock_Sub-committee-April_8,_2014

  • NOC. (2017). National Organic Coalition. Expanding organic production in the United States: Challenges & policy recommendations. Retrieved October 2017, from http://www.nationalorganiccoalition.org/LiteratureRetrieve.aspx?ID=135718

  • NOP. (2009). National Organic Program. The National List of Allowed and Prohibited Substances. Retrieved October 2017, from http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5068682&acct=nopgeninfo

  • Novak, J. S., Peck, M. W., Juneja, V. K., & Johnson, E. A. (2005). Clostridium botulinum and Clostridium perfringens. In P. M. Fratamico, A. K. Bhunia, & J. L. Smith (Eds.), Foodborne pathogens: Microbiology and molecular biology (Vol. 38, pp. 383–407). Norfolk, UK: Caister Academic Press.

    Google Scholar 

  • Noyes, J. (2009). Northern and Central California eggs recall. Retrieved October 2017, from http://www.nbclosangeles.com/news/local/Northern-California-Egg-Recall-Announced.html

  • OACC. (2008). Organic Agriculture Centre of Canada. Research needs assessment of British Columbia organic farmers. Truro, NS: Nova Scotia Agricultural College. Retrieved October 2017, from https://cdn.dal.ca/content/dam/dalhousie/pdf/faculty/agriculture/oacc/en/research-priorities/Canadian_Organic_Research_Needs_Survey_BC_2008.pdf

  • OFRF. (2007). Organic Farming Research Foundation. National Organic Research Agenda: Soils, pests, livestock, genetics. Outcomes from the scientific congress on Organic Agricultural Research (SCOAR). Retrieved October 2017, from http://ofrf.org/sites/ofrf.org/files/nora2007.pdf

  • Oscar, T. P. (2013). Initial contamination of chicken parts with Salmonella at retail and cross-contamination of cooked chicken with Salmonella from raw chicken during meal preparation. Journal of Food Protection, 76(1), 33–39.

    Article  CAS  PubMed  Google Scholar 

  • OTA. (2017). Organic Trade Association: Robust organic sector stays on upward climb, posts new records in U.S. sales. Retrieved October 2017, from https://www.ota.com/news/press-releases/19681

  • Padgham, J. (2006). Introduction to pastured poultry. In Raising poultry on pasture: Ten years of success. Hughesville, PA: The American Pastured Poultry Producers Association Compilation.

    Google Scholar 

  • Painter, J. A., Hoekstra, R. M., Ayers, T., Tauxe, R. V., Braden, C. R., Angulo, F. J., et al. (2013). Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerging Infectious Diseases, 19(3), 407–415.

    Article  PubMed  PubMed Central  Google Scholar 

  • Palaniappan, K., & Holley, R. A. (2010). Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. International Journal of Food Microbiology, 140(2), 164–168.

    Article  CAS  PubMed  Google Scholar 

  • PAN. (2007). Pesticides database – California pesticide use. Retrieved October 2017, from http://www.pesticideinfo.org/Detail_ChemUse.jsp

  • Patterson, J. A., & Burkholder, K. M. (2003). Application of prebiotics and probiotics in poultry production. Poultry Science, 82(4), 627–631.

    Article  CAS  PubMed  Google Scholar 

  • Petschow, B. W., Batema, R. P., & Ford, L. L. (1996). Susceptibility of Helicobacter pylori to bactericidal properties of medium-chain monoglycerides and free fatty acids. Antimicrobial Agents and Chemotherapy, 40(2), 302–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabuseenivasan, S., Jayakumar, M., & Ignacimuthu, S. (2006). In vitro antibacterial activity of some plant essential oils. BMC Complementary and Alternative Medicine, 6(1), 39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rada, V., DuÅ¡ková, D., Marounek, M., & Petr, J. (2001). Enrichment of Bifidobacteria in the hen caeca by dietary inulin. Folia Microbiologica, 46(1), 73–75.

    Article  CAS  PubMed  Google Scholar 

  • Ravishankar, S., Zhu, L., Law, B., Joens, L., & Friedman, M. (2008). Plant-derived compounds inactivate antibiotic-resistant Campylobacter jejuni strains. Journal of Food Protection, 71(6), 1145–1149.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, S. D., Thruston, A. D., Caughran, T. V., Collette, T. W., Patterson, K. S., & Lykins, B. W. (1998). Chemical by-products of chlorine and alternative disinfectants. Food Technology, 52(4), 58–61.

    Google Scholar 

  • Robyn, J., Rasschaert, G., Messens, W., Pasmans, F., & Heyndrickx, M. (2012). Screening for lactic acid bacteria capable of inhibiting Campylobacter jejuni in in vitro simulations of the broiler chicken caecal environment. Beneficial Microbes, 3(4), 299–308.

    Article  CAS  PubMed  Google Scholar 

  • Rosenquist, H., Nielsen, N. L., Sommer, H. M., Nørrung, B., & Christensen, B. B. (2003). Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens. International Journal of Food Microbiology, 83(1), 87–103.

    Article  PubMed  Google Scholar 

  • Salim, H. M., Kang, H. K., Akter, N., Kim, D. W., Kim, J. H., Kim, M. J., et al. (2013). Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens. Poultry Science, 92(8), 2084–2090.

    Article  CAS  PubMed  Google Scholar 

  • Salminen, S., Nybom, S., Meriluoto, J., Collado, M. C., Vesterlund, S., & El-Nezami, H. (2010). Interaction of probiotics and pathogens—Benefits to human health? Current Opinion in Biotechnology, 21(2), 157–167.

    Article  CAS  PubMed  Google Scholar 

  • Sanders, M. E., & Marco, M. L. (2010). Food formats for effective delivery of probiotics. Annual Review of Food Science and Technology, 1, 65–85.

    Article  PubMed  Google Scholar 

  • Santini, C., Baffoni, L., Gaggia, F., Granata, M., Gasbarri, R., Di Gioia, D., et al. (2010). Characterization of probiotic strains: An application as feed additives in poultry against Campylobacter jejuni. International Journal of Food Microbiology, 141, S98–S108.

    Article  PubMed  Google Scholar 

  • Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., et al. (2011). Foodborne illness acquired in the United States—Major pathogens. Emerging Infectious Diseases, 17(1), 7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoeni, J. L., & Wong, A. C. (1994). Inhibition of Campylobacter jejuni colonization in chicks by defined competitive exclusion bacteria. Applied and Environmental Microbiology, 60(4), 1191–1197.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serban, D. E. (2014). Gastrointestinal cancers: Influence of gut microbiota, probiotics and prebiotics. Cancer Letters, 345(2), 258–270.

    Article  CAS  PubMed  Google Scholar 

  • Shahverdi, A. R., Monsef-Esfahani, H. R., Tavasoli, F., Zaheri, A., & Mirjani, R. (2007). Trans-cinnamaldehyde from Cinnamomum zeylanicum bark essential oil reduces the clindamycin resistance of Clostridium difficile in vitro. Journal of Food Science, 72(1), 55–58.

    Article  CAS  Google Scholar 

  • Shen, S., Zhang, T., Yuan, Y., Lin, S., Xu, J., & Ye, H. (2015). Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control, 47, 196–202.

    Article  CAS  Google Scholar 

  • Shrestha, S., Arsi, K., Wagle, B., Donoghue, A., & Donoghue, D. (2017). Ability of select probiotics to reduce enteric Campylobacter colonization in broiler chickens. International Journal of Poultry Science, 16, 37–42.

    Article  Google Scholar 

  • Si, W., Gong, J., Tsao, R., Zhou, T., Yu, H., Poppe, C., et al. (2006). Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. Journal of Applied Microbiology, 100(2), 296–305.

    Article  CAS  PubMed  Google Scholar 

  • Si, W., Ni, X., Gong, J., Yu, H., Tsao, R., Han, Y., et al. (2009). Antimicrobial activity of essential oils and structurally related synthetic food additives towards Clostridium perfringens. Journal of Applied Microbiology, 106(1), 213–220.

    Article  CAS  PubMed  Google Scholar 

  • SkÅ™ivanová, E., Marounek, M., Benda, V., & BÅ™ezina, P. (2006). Susceptibility of Escherichia coli, Salmonella sp. and Clostridium perfringens to organic acids and monolaurin. Veterinární Medicína, 51(3), 81–88.

    Article  Google Scholar 

  • Solis de Los Santos, F., Donoghue, A. M., Venkitanarayanan, K., Dirain, M. L., Reyes-Herrera, I., Blore, P. J., et al. (2008). Caprylic acid supplemented in feed reduces enteric Campylobacter jejuni colonization in ten-day-old broiler chickens. Poultry Science, 87(4), 800–804.

    Article  CAS  PubMed  Google Scholar 

  • Solis de Los Santos, F., Donoghue, A. M., Venkitanarayanan, K., Metcalf, J. H., Reyes-Herrera, I., Dirain, M. L., et al. (2009). The natural feed additive caprylic acid decreases Campylobacter jejuni colonization in market-aged broiler chickens. Poultry Science, 88(1), 61–64.

    Article  CAS  PubMed  Google Scholar 

  • Solis de Los Santos, F., Hume, M., Venkitanarayanan, K., Donoghue, A. M., Hanning, I., Slavik, M. F., et al. (2010). Caprylic acid reduces enteric Campylobacter colonization in market-aged broiler chickens but does not appear to alter cecal microbial populations. Journal of Food Protection, 73(2), 251–257.

    Article  CAS  PubMed  Google Scholar 

  • Sprong, R. C., Hulstein, M. F., & Van der Meer, R. (2001). Bactericidal activities of milk lipids. Antimicrobial Agents and Chemotherapy, 45(4), 1298–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern, N. J. (2008). Salmonella species and Campylobacter jejuni cecal colonization model in broilers. Poultry Science, 87(11), 2399–2403.

    Article  CAS  PubMed  Google Scholar 

  • Sundrum, A. (2001). Organic livestock farming: A critical review. Livestock Production Science, 67(3), 207–215.

    Article  Google Scholar 

  • Taylor, M., Joerger, R., Palou, E., López-Malo, A., Avila-Sosa, R., & Calix-Lara, T. (2012). Alternatives to traditional antimicrobials for organically processed meat and poultry. In S. C. Ricke, E. J. Van Loo, M. G. Johnson, & C. A. O’Bryan (Eds.), Organic meat production and processing (pp. 211–230). Hoboken, NJ: Wiley.

    Chapter  Google Scholar 

  • Tellez, G., Dean, C. E., Corrier, D. E., Deloach, J. R., Jaeger, L., & Hargis, B. M. (1993). Effect of dietary lactose on cecal morphology, pH, organic acids, and Salmonella enteritidis organ invasion in Leghorn chicks. Poultry Science, 72(4), 636–642.

    Article  CAS  PubMed  Google Scholar 

  • Thormar, H., Hilmarsson, H., & Bergsson, G. (2006). Stable concentrated emulsions of the 1-monoglyceride of capric acid (monocaprin) with microbicidal activities against the food-borne bacteria Campylobacter jejuni, Salmonella spp., and Escherichia coli. Applied and Environmental Microbiology, 72(1), 522–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuyttens, F., Heyndrickx, M., De Boeck, M., Moreels, A., Van Nuffel, A., Van Poucke, E., et al. (2008). Broiler chicken health, welfare and fluctuating asymmetry in organic versus conventional production systems. Livestock Science, 113(2), 123–132.

    Article  Google Scholar 

  • Upadhyay, A., Johny, A. K., Amalaradjou, M. A. R., Baskaran, S. A., Kim, K. S., & Venkitanarayanan, K. (2012). Plant-derived antimicrobials reduce Listeria monocytogenes virulence factors in vitro, and down-regulate expression of virulence genes. International Journal of Food Microbiology, 157(1), 88–94.

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay, A., Upadhyaya, I., Kollanoor-Johny, A., & Venkitanarayanan, K. (2013). Antibiofilm effect of plant derived antimicrobials on Listeria monocytogenes. Food Microbiology, 36(1), 79–89.

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya, I., Upadhyay, A., Kollanoor-Johny, A., Baskaran, S. A., Mooyottu, S., Darre, M. J., et al. (2013). Rapid inactivation of Salmonella enteritidis on shell eggs by plant-derived antimicrobials. Poultry Science, 92(12), 3228–3235.

    Article  PubMed  Google Scholar 

  • Upadhyaya, I., Upadhyay, A., Kollanoor-Johny, A., Mooyottu, S., Baskaran, S. A., Yin, H. B., et al. (2015). In-feed supplementation of trans-cinnamaldehyde reduces layer-chicken egg-borne transmission of Salmonella enterica serovar enteritidis. Applied and Environmental Microbiology, 81(9), 2985–2994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya, I., Fancher, S., Yin, H., Nair, M. S., Chen, C., Karumathil, D., et al. (2016). Reducing Salmonella Heidelberg colonization in 21-day-old broiler chicks by in-feed supplementation of β-resorcylic acid and trans-cinnamaldehyde. In 2016 PSA Annual Meeting, Poultry Science, 95(E-suppl. 1), 162.

    Google Scholar 

  • USDA. (2012). Guide for organic crop producers. Retrieved November 2017, from https://www.ams.usda.gov/sites/default/files/media/GuideForOrganicCropProducers.pdf

  • van de Weerd, H. A., Keatinge, R., & Roderick, S. (2009). A review of key health-related welfare issues in organic poultry production. World’s Poultry Science Journal, 65(4), 649–684.

    Article  Google Scholar 

  • van Immerseel, F., De Buck, J., Boyen, F., Bohez, L., Pasmans, F., Volf, J., et al. (2004a). Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with Salmonella enterica serovar Enteritidis. Applied and Environmental Microbiology, 70(6), 3582–3587.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Immerseel, F., Buck, J. D., Pasmans, F., Huyghebaert, G., Haesebrouck, F., & Ducatelle, R. (2004b). Clostridium perfringens in poultry: An emerging threat for animal and public health. Avian Pathology, 33(6), 537–549.

    Article  PubMed  Google Scholar 

  • Van Overbeke, I., Duchateau, L., De Zutter, L., Albers, G., & Ducatelle, R. (2006). A comparison survey of organic and conventional broiler chickens for infectious agents affecting health and food safety. Avian Diseases, 50, 196–200.

    Article  PubMed  Google Scholar 

  • Vasudevan, P., Marek, P., Nair, M. K. M., Annamalai, T., Darre, M., Khan, M., et al. (2005). In vitro inactivation of Salmonella enteritidis in autoclaved chicken cecal contents by caprylic acid. Journal of Applied Poultry Research, 14(1), 122–125.

    Article  CAS  Google Scholar 

  • Velasco, S., Ortiz, L. T., Alzueta, C., Rebole, A., Trevino, J., & Rodriguez, M. L. (2010). Effect of inulin supplementation and dietary fat source on performance, blood serum metabolites, liver lipids, abdominal fat deposition, and tissue fatty acid composition in broiler chickens. Poultry Science, 89(8), 1651–1662.

    Article  CAS  PubMed  Google Scholar 

  • Wagle, B. R., Upadhyay, A., Arsi, K., Shrestha, S., Venkitanarayanan, K., Donoghue, A. M., et al. (2017a). Application of β-resorcylic acid as potential antimicrobial feed additive to reduce Campylobacter colonization in broiler chickens. Frontiers in Microbiology, 8, 599.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagle, B. R., Arsi, K., Upadhyay, A., Shrestha, S., Venkitanarayanan, K., Donoghue, A. M., et al. (2017b). β-resorcylic acid, a phytophenolic compound, reduces Campylobacter jejuni in postharvest poultry. Journal of Food Protection, 80(8), 1243–1251.

    Article  CAS  PubMed  Google Scholar 

  • Waldroup, A. L. (1993). Summary of work to control pathogens in poultry processing. Poultry Science, 72(6), 1177–1179.

    Article  CAS  PubMed  Google Scholar 

  • White, D. G., Datta, A., McDermott, P., Friedman, S., Qaiyumi, S., Ayers, S., et al. (2003). Antimicrobial susceptibility and genetic relatedness of Salmonella serovars isolated from animal-derived dog treats in the USA. Journal of Antimicrobial Chemotherapy, 52(5), 860–863.

    Article  CAS  PubMed  Google Scholar 

  • Wollenweber, E. (1988). Occurrence of flavonoid aglycones in medicinal plants. Progress in Clinical and Biological Research, 280, 45–55.

    CAS  PubMed  Google Scholar 

  • Xu, Z. R., Hu, C. H., Xia, M. S., Zhan, X. A., & Wang, M. Q. (2003). Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poultry Science, 82(6), 1030–1036.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., Zhou, F., Ji, B. P., Pei, R. S., & Xu, N. (2008). The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Letters in Applied Microbiology, 47(3), 174–179.

    Article  CAS  PubMed  Google Scholar 

  • Yin, H. B., Chen, C. H., Kollanoor-Johny, A., Darre, M. J., & Venkitanarayanan, K. (2015). Controlling Aspergillus flavus and Aspergillus parasiticus growth and aflatoxin production in poultry feed using carvacrol and trans-cinnamaldehyde. Poultry Science, 94(9), 2183–2190.

    Article  CAS  PubMed  Google Scholar 

  • Yossa, N., Patel, J., Macarisin, D., Millner, P., Murphy, C., Bauchan, G., et al. (2014). Antibacterial activity of cinnamaldehyde and Sporan against Escherichia coli O157:H7 and Salmonella. Journal of Food Processing and Preservation, 38(3), 749–757.

    Article  CAS  Google Scholar 

  • Young, I., Rajić, A., Wilhelm, B. J., Waddell, L., Parker, S., & McEwen, S. A. (2009). Comparison of the prevalence of bacterial enteropathogens, potentially zoonotic bacteria and bacterial resistance to antimicrobials in organic and conventional poultry, swine and beef production: A systematic review and meta-analysis. Epidemiology and Infection, 137(9), 1217–1232.

    Article  CAS  PubMed  Google Scholar 

  • Yusrizal, & Chen, T. C. (2003). Effect of adding chicory fructans in feed on broiler growth performance, serum cholesterol and intestinal length. International Journal of Poultry Science, 2, 214–219.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Donoghue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arsi, K., Donoghue, D.J., Venkitanarayanan, K., Donoghue, A.M. (2019). Reducing Foodborne Pathogens in Organic Poultry: Challenges and Opportunities. In: Venkitanarayanan, K., Thakur, S., Ricke, S. (eds) Food Safety in Poultry Meat Production. Food Microbiology and Food Safety(). Springer, Cham. https://doi.org/10.1007/978-3-030-05011-5_2

Download citation

Publish with us

Policies and ethics