Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 134 Accesses

Abstract

This chapter includes the analysis of the degradation of calcium carbonate (CC) composites employing the CC composites degradation model described in Sect. 3.2.3. In addition, it presents a second analysis of the experimental data presented in Chap. 6 using an extended method which takes advantage of the detailed nature of the data. Chapter 7 is the third and last chapter dealing with the use of the ceramic-specific degradation models, derived from the general modelling framework, to analyse the degradation of biocomposites and thus, presents a structure similar to Chaps. 4 and 5. The first section, Sect. 7.1, presents the calcium carbonate composite degradation data harvested from literature. Section 7.2 reports the different types of calcium carbonate encountered in the harvested data and the values of the ceramic-dependent constant for each one of them. Similarly to Chap. 5, the values of the polymer-dependent constants are not included. Those values can be found in Sect. 4.3. The values at the time origin of the variables employed in the CC composites degradation model are included in Sect. 7.3. The results of the degradation simulations are presented in Sect. 7.4, followed by the discussion in Sect. 7.5. Section 7.6 contains the conclusions derived from the different analyses of the degradation of calcium carbonate composites. The detailed analysis of Chap. 6 data is presented in Sect. 7.7. And lastly, in addition to the calcium carbonate specific conclusions, Sect. 7.8 contains a summary of the core insights derived from the composite degradation analyses carried out in Chaps 4, 5 and 7 with the three ceramic-specific computational models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wakita, T., Nakamura, J., Ota, Y., Obata, A., Kasuga, T., & Ban, S. (2011). Effect of preparation route on the degradation behavior and ion releasability of siloxane-poly(lactic acid)-vaterite hybrid nonwoven fabrics for guided bone regeneration. Dental Materials Journal, 30(2), 232–238.

    Google Scholar 

  2. Liu, Y., Huang, Q., Kienzle, A., Müller, W., & Feng, Q. (2014). In vitro degradation of porous PLLA/pearl powder composite scaffolds. Materials Science and Engineering: C, 38, 227–234.

    Google Scholar 

  3. Li, S., & Vert, M. (1996). Hydrolytic degradation of coral/poly(DL-lactic acid) bioresorbable material. Journal of Biomaterials Science, Polymer Edition, 7(9), 817–827.

    Google Scholar 

  4. Ara, M., Watanabe, M., & Imai, Y. (2002). Effect of blending calcium compounds on hydrolytic degradation of poly(DL-lactic acid-co-glycolic acid). Biomaterials, 23(12), 2479–2483.

    Google Scholar 

  5. Tsunoda, M. (2003). Degradation of poly(DL-lactic acid-co-glycolic acid) containing calcium carbonate and hydroxyapatite fillers-effect of size and shape of the fillers. Dental Materials Journal, 22(3), 371–382.

    Article  CAS  Google Scholar 

  6. Agrawal, C. M., & Athanasiou, K. A. (1997). Technique to control pH in vicinity of biodegrading PLA-PGA implants. Journal of Biomedical Materials Research, 38(2), 105–114.

    Google Scholar 

  7. Cotton, N. J., Egan, M. J., & Brunelle, J. E. (2008). Composites of poly(DL-lactide-co-glycolide) and calcium carbonate: In vitro evaluation for use in orthopedic applications. Journal of Biomedical Materials Research Part A, 85(1), 195–205.

    Google Scholar 

  8. Pan, J., Han, X., Niu, W., & Cameron, R. E. (2011). A model for biodegradation of composite materials made of polyesters and tricalcium phosphates. Biomaterials, 32(9), 2248–2255.

    Article  CAS  Google Scholar 

  9. Morse, J. W., Arvidson, R. S., & Lüttge, A. (2007). Calcium carbonate formation and dissolution. Chemical Reviews, 107(2), 342–381.

    Article  CAS  Google Scholar 

  10. Graf, D. (1961). Crystallographic tables for the rhombohedral carbonates. American Mineralogist, 46(11–2), 1283–1316.

    CAS  Google Scholar 

  11. De Villiers, J. P. R. (1967). The crystal structures of aragonite, strontianite, and witherite. Ph.D. thesis, University of Illinois at Urbana-Champaign.

    Google Scholar 

  12. Kamhi, S. R. (1963). On the structure of vaterite, \({\rm {CaCO}_{3}}\). Acta Crystallographica, 16(8), 770–772.

    Article  CAS  Google Scholar 

  13. Harned, H. S., & Davis, R, Jr. (1943). The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50\(^\circ \). Journal of the American Chemical Society, 65(10), 2030–2037.

    Article  CAS  Google Scholar 

  14. Harned, H. S., & Scholes, S. R, Jr. (1941). The ionization constant of HCO\(_3^{-}\) from 0 to 50\(^\circ \). Journal of the American Chemical Society, 63(6), 1706–1709.

    Article  CAS  Google Scholar 

  15. PubChem (2005a). CID: 10112. Retrieved September 1, 2016, from https://pubchem.ncbi.nlm.nih.gov/compound/calcium_carbonate#section=Top.

  16. Plummer, L. N., & Busenberg, E. (1982). The solubilities of calcite, aragonite and vaterite in CO\(_{2}\)-H\(_{2}\)O solutions between 0 and 90\(^\circ \)C, and an evaluation of the aqueous model for the system CaCO\(_{3}\)-CO\(_{2}\)-H\(_{2}\)O. Geochimica et Cosmochimica Acta, 46(6), 1011–1040.

    Article  CAS  Google Scholar 

  17. Mindat Online Database (2016b). Calcite. Retrieved September 1, 2016, from http://www.mindat.org/min-859.html.

  18. Mindat Online Database (2016a). Aragonite. Retrieved September 1, 2016, from http://www.mindat.org/min-307.html.

  19. Mindat Online Database (2016c). Vaterite. Retrieved September 1, 2016, from http://www.mindat.org/min-4161.html.

  20. Sjöberg, E. L., & Rickard, D. T. (1984). Temperature dependence of calcite dissolution kinetics between 1 and \(62^{\circ }\)C at pH 2.7–8.4 in aqueous solutions. Geochimica et Cosmochimica Acta, 48(3), 485–493.

    Article  Google Scholar 

  21. Neuendorf, R., Saiz, E., Tomsia, A., & Ritchie, R. (2008). Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds. Acta Biomaterialia, 4(5), 1288–1296.

    Article  CAS  Google Scholar 

  22. Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335–2346.

    Article  CAS  Google Scholar 

  23. Li, H., & Chang, J. (2005). pH-compensation effect of bioactive inorganic fillers on the degradation of PLGA. Composites Science and Technology, 65(14), 2226–2232.

    Article  CAS  Google Scholar 

  24. Feely, R., Sabine, C., Lee, K., Millero, F., Lamb, M., Greeley, D., et al. (2002). In situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochemical Cycles, 16(4), 91-1.

    Article  Google Scholar 

  25. Fu, K., Pack, D. W., Klibanov, A. M., & Langer, R. (2000). Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharmaceutical Research, 17(1), 100–106.

    Article  CAS  Google Scholar 

  26. Blanco, D., & Alonso, M. J. (1998). Protein encapsulation and release from poly(lactide-co-glycolide) microspheres: Effect of the protein and polymer properties and of the co-encapsulation of surfactants. European Journal of Pharmaceutics and Biopharmaceutics, 45(3), 285–294.

    Article  CAS  Google Scholar 

  27. Blanco, M. D., Sastre, R. L., Teijón, C., Olmo, R., & Teijón, J. M. (2006). Degradation behaviour of microspheres prepared by spray-drying poly(D, L-lactide) and poly(D, L-lactide-co-glycolide) polymers. International Journal of Pharmaceutics, 326(1), 139–147.

    Article  CAS  Google Scholar 

  28. Dunne, M., Corrigan, O., & Ramtoola, Z. (2000). Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials, 21(16), 1659–1668.

    Article  CAS  Google Scholar 

  29. Musyanovych, A., & Landfester, K. (2012). Biodegradable polyester-based nanoparticle formation by miniemulsion technique. Material Matters, 7(3), 30–34.

    CAS  Google Scholar 

  30. Panyam, J., Dali, M. M., Sahoo, S. K., Ma, W., Chakravarthi, S. S., Amidon, G. L., et al. (2003). Polymer degradation and in vitro release of a model protein from poly (D, L-lactide-co-glycolide) nano-and microparticles. Journal of Controlled Release, 92(1), 173–187.

    Article  CAS  Google Scholar 

  31. Samadi, N., Abbadessa, A., Di Stefano, A., Van Nostrum, C., Vermonden, T., Rahimian, S., et al. (2013). The effect of lauryl capping group on protein release and degradation of poly(D, L-lactic-co-glycolic acid) particles. Journal of Controlled Release, 172(2), 436–443.

    Article  CAS  Google Scholar 

  32. Barrett, C. E., & Cameron, R. E. (2014). X-ray microtomographic analysis of \(\alpha \)-tricalcium phosphate-poly(lactic-co-glycolic) acid nanocomposite degradation. Polymer, 55(16), 4041–4049.

    Article  CAS  Google Scholar 

  33. Barrett, C. E. (2013). The degradation behaviour of tricalcium phosphate - poly(lactide-co-glycolide) nanocomposites. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.

    Google Scholar 

  34. Yang, Z. (2009). Development and characterisation of bioactive, bioresorbable  \(\upalpha \)-tricalcium phosphate/poly(D,L-lactide-co-glycolide) nanocomposites for bone substitution and fixation. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.

    Google Scholar 

  35. Yang, Z., Best, S. M., & Cameron, R. E. (2009). The influence of \(\alpha \)-tricalcium phosphate nanoparticles and microparticles on the degradation of poly(D, L-lactide-co-glycolide). Advanced Materials, 21(38–39), 3900–3904.

    Article  CAS  Google Scholar 

  36. Bennett, S. M. (2012). Degradation mechanisms of PLGA/\(\upalpha \)-TCP composites for orthopaedic applications. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Moreno-Gomez .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moreno-Gomez, I. (2019). Degradation of Bioresorbable Composites: Calcium Carbonate Case Studies. In: A Phenomenological Mathematical Modelling Framework for the Degradation of Bioresorbable Composites. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-04990-4_7

Download citation

Publish with us

Policies and ethics