Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 142 Accesses

Abstract

In this chapter, the analysis of the degradation of hydroxyapatite (HA) composites using the HA composites degradation model, described in Sect. 3.2.2, is presented. The chapter follows, with minor changes, the structure of Chap. 4. Firstly, in Sect. 5.1, the HA composite degradation data harvested from literature are reported, including the necessary composite degradation input information employed by the computational model. The second section, Sect. 5.2, includes information about the different types of hydroxyapatite (HA) found in the harvested degradation data and their associated values for the ceramic-dependent constants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    HAp was chosen as abbreviation to designate pure hydroxyapatite, instead of the the more usual HA, as HA was used throughout this work as abbreviation for hydroxyapatite in a general broad sense, i.e. group of all ceramics that could be classified as hydroxyapatite, independently of their particular properties.

  2. 2.

    Information about the chosen fraction of carbonate ions in carbonated hydroxyapatite can be found in Appendix A.1.

References

  1. Wang, Y., Liu, L., & Guo, S. (2010b). Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polymer Degradation and Stability, 95(2), 207–213.

    Article  CAS  Google Scholar 

  2. Huang, J., Xiong, J., Liu, J., Zhu, W., & Wang, D. (2013). Investigation of the in vitro degradation of a novel polylactide/nanohydroxyapatite composite for artificial bone. Journal of Nanomaterials, 2013, 3.

    Google Scholar 

  3. Wang, Z., Wang, Y., Ito, Y., Zhang, P., & Chen, X. (2016). A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation. Scientific Reports, 6.

    Google Scholar 

  4. Zhou, H., Touny, A. H., & Bhaduri, S. B. (2011). Fabrication of novel PLA/CDHA bionanocomposite fibers for tissue engineering applications via electrospinning. Journal of Materials Science: Materials in Medicine, 22(5), 1183–1193.

    CAS  Google Scholar 

  5. Verheyen, C., De Wijn, J., Van Blitterswijk, C., & De Groot, K. (1992). Evaluation of hydroxylapatite/poly(L-lactide) composites: Mechanical behavior. Journal of Biomedical Materials Research, 26(10), 1277–1296.

    Article  CAS  Google Scholar 

  6. Verheyen, C., Klein, C., de Blieck-Hogervorst, J., Wolke, J., Van Blitterswijn, C., & De Groot, K. (1993). Evaluation of hydroxylapatite/poly(L-lactide) composites: Physico-chemical properties. Journal of Materials Science: Materials in Medicine, 4(1), 58–65.

    CAS  Google Scholar 

  7. Díaz, E., Sandonis, I., Puerto, I., & Ibáñez, I. (2014). In vitro degradation of PLLA/nHA composite scaffolds. Polymer Engineering and Science, 54(11), 2571–2578.

    Article  Google Scholar 

  8. Shikinami, Y., & Okuno, M. (1999). Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Biomaterials, 20(9), 859–877.

    Article  CAS  Google Scholar 

  9. Furukawa, T., Matsusue, Y., Yasunaga, T., Shikinami, Y., Okuno, M., & Nakamura, T. (2000). Biodegradation behavior of ultra-high-strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures. Biomaterials, 21(9), 889–898.

    Article  CAS  Google Scholar 

  10. Ishii, S., Tamura, J., Furukawa, T., Nakamura, T., Matsusue, Y., Shikinami, Y., et al. (2003). Long-term study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures: A 2-4-year follow-up study in rabbits. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 66(2), 539–547.

    Article  Google Scholar 

  11. Shikinami, Y., & Okuno, M. (2001). Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly L-lactide (PLLA). Part II: Practical properties of miniscrews and miniplates. Biomaterials, 22(23), 3197–3211.

    Article  CAS  Google Scholar 

  12. Deng, X., Sui, G., Zhao, M., Chen, G., & Yang, X. (2007). Poly(L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning. Journal of Biomaterials Science, Polymer Edition, 18(1), 117–130.

    Article  CAS  Google Scholar 

  13. Sui, G., Yang, X., Mei, F., Hu, X., Chen, G., Deng, X., et al. (2007). Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. Journal of Biomedical Materials Research Part A, 82(2), 445–454.

    Article  Google Scholar 

  14. Xu, X., Chen, X., Liu, A., Hong, Z., & Jing, X. (2007). Electrospun poly(L-lactide)-grafted hydroxyapatite/poly(L-lactide) nanocomposite fibers. European Polymer Journal, 43(8), 3187–3196.

    Article  CAS  Google Scholar 

  15. Rakmae, S., Lorprayoon, C., Ekgasit, S., & Suppakarn, N. (2013). Influence of heat-treated bovine bone-derived hydroxyapatite on physical properties and in vitro degradation behavior of poly(lactic acid) composites. Polymer-Plastics Technology and Engineering, 52(10), 1043–1053.

    Article  CAS  Google Scholar 

  16. Rakmae, S., Ruksakulpiwat, Y., Sutapun, W., & Suppakarn, N. (2012). Effect of silane coupling agent treated bovine bone based carbonated hydroxyapatite on in vitro degradation behavior and bioactivity of PLA composites. Materials Science and Engineering: C, 32(6), 1428–1436.

    Article  CAS  Google Scholar 

  17. Van der Meer, S., De Wijn, J., & Wolke, J. (1996). The influence of basic filler materials on the degradation of amorphous D-and L-lactide copolymer. Journal of Materials Science: Materials in Medicine, 7(6), 359–361.

    Google Scholar 

  18. Zou, B., Chen, X., Zhi, W., Liu, Y., Cui, W., Hu, S., et al. (2012). Promoted healing of femoral defects with in situ grown fibrous composites of hydroxyapatite and poly(DL-lactide). Journal of Biomedical Materials Research Part A, 100(6), 1407–1418.

    Article  Google Scholar 

  19. Zou, B., Li, X., Zhuang, H., Cui, W., Zou, J., & Chen, J. (2011). Degradation behaviors of electrospun fibrous composites of hydroxyapatite and chemically modified poly(DL-lactide). Polymer Degradation and Stability, 96(1), 114–122.

    Article  CAS  Google Scholar 

  20. Hasegawa, S., et al. (2005). In vivo evaluation of a porous hydroxyapatite/poly-DL-lactide composite for use as a bone substitute. Journal of Biomedical Materials Research Part A, 75(3), 567–579.

    Article  Google Scholar 

  21. Chen, L., Tang, C. Y., Tsui, C. P., et al. (2013). Mechanical properties and in vitro evaluation of bioactivity and degradation of dexamethasone-releasing poly-D-L-lactide/nano-hydroxyapatite composite scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 22, 41–50.

    Article  Google Scholar 

  22. Hile, D. D., Doherty, S. A., & Trantolo, D. J. (2004). Prediction of resorption rates for composite polylactide/hydroxylapatite internal fixation devices based on initial degradation profiles. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 71(1), 201–205.

    Article  Google Scholar 

  23. Díaz, E., & Puerto, I. (2015). In vitro degradation of PLCL/nHA biodegradable scaffolds. Polymer-Plastics Technology and Engineering, 54(6), 556–564.

    Article  Google Scholar 

  24. Ural, E., Kesenci, K., Fambri, L., Migliaresi, C., & Piskin, E. (2000). Poly(D, L-cactide/\(\varepsilon \)-caprolactone)/hydroxyapatite composites. Biomaterials, 21(21), 2147–2154.

    CAS  Google Scholar 

  25. Tsunoda, M. (2003). Degradation of poly(DL-lactic acid-co-glycolic acid) containing calcium carbonate and hydroxyapatite fillers-effect of size and shape of the fillers. Dental Materials Journal, 22(3), 371–382.

    Article  CAS  Google Scholar 

  26. Li, H., & Chang, J. (2005). pH-compensation effect of bioactive inorganic fillers on the degradation of PLGA. Composites Science and Technology, 65(14), 2226–2232.

    Article  CAS  Google Scholar 

  27. Díaz, E., Puerto, I., & Sandonis, I. (2015). The effects of bioactive nanoparticles on the degradation of DLGA. International Journal of Polymeric Materials and Polymeric Biomaterials, 64(1), 38–46.

    Article  Google Scholar 

  28. Agrawal, C. M., & Athanasiou, K. A. (1997). Technique to control pH in vicinity of biodegrading PLA-PGA implants. Journal of Biomedical Materials Research, 38(2), 105–114.

    Article  CAS  Google Scholar 

  29. Naik, A., Shepherd, D. V., Shepherd, J. H., Best, S. M., & Cameron, R. E. (2017). The effect of the type of HA on the degradation of PLGA/HA composites. Materials Science and Engineering: C, 70, 824–831.

    Article  CAS  Google Scholar 

  30. Naik, A. (2012). Effect of calcination and silanisation on the degradation of poly(DL Lactic-co-glycolic acid)-hydroxyapatite composites. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.

    Google Scholar 

  31. Naik, A., Best, S. M., & Cameron, R. E. (2015). The influence of silanisation on the mechanical and degradation behaviour of PLGA/HA composites. Materials Science and Engineering: C, 48, 642–650.

    Article  CAS  Google Scholar 

  32. Ege, D. (2012). Mechanical and degradation properties of calcium phosphate/biodegradable polymer composites. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.

    Google Scholar 

  33. Ege, D., Best, S., & Cameron, R. (2014). The degradation behaviour of nanoscale HA/PLGA and \(\alpha \)-TCP/PLGA composites. Bioinspired, Biomimetic and Nanobiomaterials, 3, BBN2.

    Google Scholar 

  34. Lee, J. B., Kim, S. E., Heo, D. N., Kwon, I. K., & Choi, B.-J. (2010). In vitro characterization of nanofibrous PLGA/gelatin/hydroxyapatite composite for bone tissue engineering. Macromolecular Research, 18(12), 1195–1202.

    Article  CAS  Google Scholar 

  35. Liuyun, J., Chengdong, X., Lixin, J., & Lijuan, X. (2013). Degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid nanocomposite in simulated body fluid. Materials Research Bulletin, 48(10), 4186–4190.

    Article  Google Scholar 

  36. Ban, S., Watanabe, T., Itoh, T., Nakamura, H., Tsuruta, S., & Kawai, T. (2004). Development of biodegradable composite membrane containing oriented needle-like apatites. Journal of Oral Tissue Engineering, 2(1), 1–13.

    Google Scholar 

  37. Rodenas-Rochina, J., Vidaurre, A., Cortázar, I. C., & Lebourg, M. (2015). Effects of hydroxyapatite filler on long-term hydrolytic degradation of PLLA/PCL porous scaffolds. Polymer Degradation and Stability, 119, 121–131.

    Article  CAS  Google Scholar 

  38. Ji, W., Yang, F., Seyednejad, H., Chen, Z., Hennink, W. E., Anderson, J. M., et al. (2012). Biocompatibility and degradation characteristics of PLGA-based electrospun nanofibrous scaffolds with nanoapatite incorporation. Biomaterials, 33(28), 6604–6614.

    Article  CAS  Google Scholar 

  39. Dunn, A. S., Campbell, P. G., & Marra, K. G. (2001). The influence of polymer blend composition on the degradation of polymer/hydroxyapatite biomaterials. Journal of Materials Science: Materials in Medicine, 12(8), 673–677.

    CAS  Google Scholar 

  40. Pan, J., Han, X., Niu, W., & Cameron, R. E. (2011). A model for biodegradation of composite materials made of polyesters and tricalcium phosphates. Biomaterials, 32(9), 2248–2255.

    Article  CAS  Google Scholar 

  41. Bates, R. G. (1951). First dissociation constant of phosphoric acid from 0\(^\circ \) to 60\(^\circ \)C: Limitations of the electromotive force method for moderately strong acids. Journal of Research of the National Bureau of Standards, 47, 127–134.

    CAS  Google Scholar 

  42. Bates, R. G., & Acree, S. (1943). pH values of certain phosphate-chloride mixtures, and the second dissociation constant of phosphoric acid from 0\(^\circ \) to 60\(^\circ \)C. Journal of Research of the National Bureau of Standards, 30, 129–155.

    CAS  Google Scholar 

  43. Vanderzee, C. E., & Quist, A. S. (1961). The third dissociation constant of orthophosphoric acid. The Journal of Physical Chemistry, 65(1), 118–123.

    Article  CAS  Google Scholar 

  44. Marshall, W. L., & Franck, E. (1981). Ion product of water substance, 0–1000\(^\circ \)C, 1–10,000 bars new international formulation and its background. Journal of Physical and Chemical Reference Data, 10(2), 295–304.

    CAS  Google Scholar 

  45. PubChem, (2005). CID: 14781. Retrieved September 1, 2016 from https://pubchem.ncbi.nlm.nih.gov/compound/14781#section=Top.

  46. Dorozhkin, S. V., & Epple, M. (2002). Biological and medical significance of calcium phosphates. Angewandte Chemie International Edition, 41(17), 3130–3146.

    Article  CAS  Google Scholar 

  47. Ito, A., Maekawa, K., Tsutsumi, S., Ikazaki, F., & Tateishi, T. (1997). Solubility product of OH-carbonated hydroxyapatite. Journal of Biomedical Materials Research Part A, 36(4), 522–528.

    Article  CAS  Google Scholar 

  48. Nair, M. (2016). Modelling and study of the dissolution rate of calcium-based fillers in composites for orthopaedic applications. Part III individual research project, Department of Materials Science and Metallurgy, University of Cambridge.

    Google Scholar 

  49. Neuendorf, R., Saiz, E., Tomsia, A., & Ritchie, R. (2008). Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds. Acta Biomaterialia, 4(5), 1288–1296.

    Article  CAS  Google Scholar 

  50. Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335–2346.

    Article  CAS  Google Scholar 

  51. Bohner, M. (2000). Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements. Injury, 31, D37–D47.

    Article  Google Scholar 

  52. Daculsi, G., LeGeros, R., LeGeros, J., & Mitre, D. (1991). Lattice defects in calcium phosphate ceramics: High resolution TEM ultrastructural study. Journal of Applied Biomaterials, 2(3), 147–152.

    Article  Google Scholar 

  53. LeGeros, R. Z. (1993). Biodegradation and bioresorption of calcium phosphate ceramics. Clinical Materials, 14(1), 65–88.

    Article  CAS  Google Scholar 

  54. Christoffersen, J., Christoffersen, M. R., & Kjaergaard, N. (1978). The kinetics of dissolution of calcium hydroxyapatite in water at constant pH. Journal of Crystal Growth, 43(4), 501–511.

    Article  CAS  Google Scholar 

  55. Hyakuna, K., Yamamuro, T., Kotoura, Y., Oka, M., Nakamura, T., Kitsugi, T., et al. (1990). Surface reactions of calcium phosphate ceramics to various solutions. Journal of Biomedical Materials Research Part A, 24(4), 471–488.

    Article  CAS  Google Scholar 

  56. Yamamuro, T., Shikata, J., Kakutani, Y., Yoshii, S., Kitsugi, T., & Ono, K. (1988). Novel methods for clinical applications of bioactive ceramics. Annals of the New York Academy of Sciences, 523(1), 107–114.

    Article  CAS  Google Scholar 

  57. Higashi, S., Yamamuro, T., Nakamura, T., Ikada, Y., Hyon, S.-H., & Jamshidi, K. (1986). Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials, 7(3), 183–187.

    Article  CAS  Google Scholar 

  58. Kobayashi, S., & Yamaji, S. (2014). Analytical prediction of hydrolysis behavior of tricalcium phosphate/poly-L-lactic acid composites in simulated body environment. Advanced Composite Materials, 23(3), 211–223.

    Article  CAS  Google Scholar 

  59. Lam, C. X., Hutmacher, D. W., Schantz, J.-T., Woodruff, M. A., & Teoh, S. H. (2009). Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. Journal of Biomedical Materials Research Part A, 90(3), 906–919.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Moreno-Gomez .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moreno-Gomez, I. (2019). Degradation of Bioresorbable Composites: Hydroxyapatite Case Studies. In: A Phenomenological Mathematical Modelling Framework for the Degradation of Bioresorbable Composites. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-04990-4_5

Download citation

Publish with us

Policies and ethics