Skip to main content

Stochastic Dosimetry for Radio-Frequency Exposure Assessment in Realistic Scenarios

  • Chapter
  • First Online:
Book cover Uncertainty Modeling for Engineering Applications

Part of the book series: PoliTO Springer Series ((PTSS))

Abstract

Stochastic dosimetry, combining electromagnetic computational techniques and statistics to build surrogate models, allows assessing exposure to EMF accounting for variability and uncertainty intrinsic of real scenarios. In this study, we present some examples of exposure assessment of children and fetuses to RF devices in uncertain scenarios using stochastic dosimetry. Polynomial chaos expansions and low rank tensor approximations, applied to build surrogate models of Specific Absorption Rate (SAR), permitted a fast estimation of the variability of the exposure due to the variation in the RF source position.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gregor Dürrenberger MOM, Fröhlich J, Röösli M (2014) EMF monitoring—concepts, activities, gaps and options. Int J Environ Res Public Health 11(9):9460–9479

    Article  Google Scholar 

  2. Van Deventer E, Van Rongen E, Saunders R (2011) WHO research agenda for radiofrequency fields. Bioelectromagnetics 32(5):417–421

    Article  Google Scholar 

  3. Fiocchi S, Markakis IA, Ravazzani P, Samaras T (2013) SAR exposure from UHF RFID reader in adult, child, pregnant woman, and fetus anatomical models. Bioelectromagnetics 34(6):443–452

    Article  Google Scholar 

  4. Tateno A, Nagaoka T, Saito K, Watanabe S, Takahashi M (2015) Variability of specific absorption rate of human body for various configurations of tablet computer in vicinity of abdomen. IEICE Trans Commun 98(7):1173–1181

    Article  Google Scholar 

  5. Findlay RP, Dimbylow PJ (2010) SAR in a child voxel phantom from exposure to wireless computer networks (Wi-Fi). Phys Med Biol 55(15):N405

    Article  Google Scholar 

  6. Wiart J (2016) Radio-frequency human exposure assessment: from deterministic to stochastic methods. Wiley, ISTE

    Book  Google Scholar 

  7. Sudret B, Marelli S, Wiart J (2017) Surrogate models for uncertainty quantification: an overview. In: 11th European conference on antennas and propagation (EUCAP). IEEE

    Google Scholar 

  8. Chiaramello E, Parazzini M, Fiocchi S, Ravazzani P, Wiart J (2017) Assessment of fetal exposure to 4G LTE tablet in realistic scenarios: effect of position, gestational age and frequency. IEEE J Electromagn RF Microw Med Biol 1:26–33

    Article  Google Scholar 

  9. Chiaramello E, Parazzini M, Fiocchi S, Ravazzani P, Wiart J Stochastic dosimetry based on low rank tensor approximations for the assessment of children exposure to WLAN Source. IEEE J Electromagn RF Microw Med Biol 2(2):131–137. https://doi.org/10.1109/JERM.2018.2825018

    Article  Google Scholar 

  10. Chiaramello E, Fiocchi S, Ravazzani P, Parazzini M (2017) Stochastic dosimetry for the assessment of children exposure to uniform 50 Hz magnetic field with uncertain orientation. Biomed Res Int 1–14:2017

    Google Scholar 

  11. Fiocchi S, Chiaramello E, Parazzini M, Ravazzani P (2018) Influence of tissue conductivity on foetal exposure to extremely low frequency magnetic fields at 50 Hz using stochastic dosimetry. Plos ONE. https://doi.org/10.1371/journal.pone.0192131

    Article  Google Scholar 

  12. Wiener N (1938) The homogeneous chaos. Amer J Math 60(4):897–936

    Article  MathSciNet  Google Scholar 

  13. Blatman G, Sudret B (2011) Adaptive sparse polynomial chaos expansion based on least angle regression. J Comput Phys 230(6):2345–2367

    Article  MathSciNet  Google Scholar 

  14. Konakli K, Sudret B (2016) Polynomial meta-models with canonical low-rank approximations: numerical insights and comparison to sparse polynomial chaos expansions. J Comput Phys 321:1144–1169

    Article  MathSciNet  Google Scholar 

  15. Xiu D, Karniadakis GE (2002) The wiener–askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644

    Article  MathSciNet  Google Scholar 

  16. Blatman G, Sudret B, Berveiller M (2007) Quasi random numbers in stochastic finite element analysis. Mécanique Ind. 8(3):289–297

    Article  Google Scholar 

  17. Christ A et al (2012) Exposure of the human body to professional and domestic induction cooktops compared to the basic restrictions. Bioelectromagn 33(8):695–705

    Article  Google Scholar 

  18. Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: 1. Literature survey. Phys Med Biol 41(11):2231–2249

    Article  Google Scholar 

  19. Ghanmi A, Varsier N, Hadjem A, Conil E, Wiart J, Person C (2014) Design and validation of a generic LTE tablet for SAR assessment studies. In: Proceedings 8th European conference antennas propagation, pp 2421–2425

    Google Scholar 

  20. Gosselin M-C, Neufeld E, Moser H, Huber E, Farcito S, Gerber L, Jedensjö M, Hilber I, Di Gennaro F, Lloyd B, Cherubini E, Szczerba D, Kainz W, Kuster N (2014) Development of a new generation of high-resolution anatomical models for medical device evaluation: the virtual population 3.0. Phys Med Biol 59(18):5287–5303

    Article  Google Scholar 

  21. Pinto Y, Wiart J (2017) Statistical analysis and surrogate modeling of indoor exposure induced from a WLAN source. In: 2017 11th European conference on antennas and propagation (EUCAP). IEEE, pp 806–810

    Google Scholar 

  22. International Commission on Non-Ionizing Radiation Protection (1998) ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields. Health Phys 74:494–522

    Google Scholar 

Download references

Acknowledgements

This work was supported by the French National Research Program for Environmental and Occupational Health of Anses (EST-2016-2RF-04) Project AMPERE: Advanced MaPping of residential ExposuRE to RF-EMF sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ravazzani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chiaramello, E., Fiocchi, S., Parazzini, M., Ravazzani, P., Wiart, J. (2019). Stochastic Dosimetry for Radio-Frequency Exposure Assessment in Realistic Scenarios. In: Canavero, F. (eds) Uncertainty Modeling for Engineering Applications. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-04870-9_6

Download citation

Publish with us

Policies and ethics