Skip to main content

Data-Efficient Sensitivity Analysis with Surrogate Modeling

  • Chapter
  • First Online:

Part of the book series: PoliTO Springer Series ((PTSS))

Abstract

As performing many experiments and prototypes leads to a costly and long analysis process, scientists and engineers often rely on accurate simulators to reduce costs and improve efficiency. However, the computational demands of these simulators are also growing as their accuracy and complexity keeps increasing. Surrogate modeling is a powerful framework for data-efficient analysis of these simulators. A common use-case in engineering is sensitivity analysis to identify the importance of each of the inputs with regard to the output. In this work, we discuss surrogate modeling, sequential design, sensitivity analysis and how these three can be combined into a data-efficient sensitivity analysis method to accurately perform sensitivity analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Borgonovo E (2007) A new uncertainty importance measure. Reliab Eng Syst Saf 92:771–784

    Article  Google Scholar 

  2. Broomhead DS, Lowe D (1988) Radial basis functions, multi-variable functional interpolation and adaptive networks. Technical report, DTIC Document

    Google Scholar 

  3. Crestaux T, Le Maıtre O, Martinez JM (2009) Polynomial chaos expansion for sensitivity analysis. Reliab Eng Syst Saf 94(7):1161–1172

    Article  Google Scholar 

  4. Crombecq K, Gorissen D, Deschrijver D, Dhaene T (2010) A novel hybrid sequential design strategy for global surrogate modelling of computer experiments. SIAM J Sci Comput 33(4):1948–1974

    Article  Google Scholar 

  5. Cukier R, Levine H, Shuler K (1978) Nonlinear sensitivity analysis of multiparameter model systems. J Comput Phys 26(1):1–42

    Article  MathSciNet  Google Scholar 

  6. van Dam ER, Rennen G, Husslage B (2009) Bounds for maximin latin hypercube designs. Oper Res 57(3):595–608

    Article  MathSciNet  Google Scholar 

  7. Degroote J, Hojjat M, Stavropoulou E, Wüchner R, Bletzinger KU (2013) Partitioned solution of an unsteady adjoint for strongly coupled fluid-structure interactions and application to parameter identification of a one-dimensional problem. Struct Multidiscip Optim 47(1):77–94

    Article  MathSciNet  Google Scholar 

  8. Goethals K, Couckuyt I, Dhaene T, Janssens A (2012) Sensitivity of night cooling performance to room/system design: surrogate models based on CFD. Build Environ 58:23–36

    Article  Google Scholar 

  9. Gorissen D (2010) Grid-enabled adaptive surrogate modeling for computer aided engineering. PhD thesis, Universiteit Gent

    Google Scholar 

  10. Gorissen D, Couckuyt I, Laermans E, Dhaene T (2010a) Multiobjective global surrogate modeling, dealing with the 5-percent problem. Eng Comput 26(1):81–98

    Article  Google Scholar 

  11. Gorissen D, Crombecq K, Couckuyt I, Demeester P, Dhaene T (2010b) A surrogate modeling and adaptive sampling toolbox for computer based design. J Mach Learn Res 11:2051–2055

    Google Scholar 

  12. van der Herten J, Couckuyt I, Deschrijver D, Dhaene T (2015) A fuzzy hybrid sequential design strategy for global surrogate modeling of high-dimensional computer experiments. SIAM J Sci Comput 37(2):1020–1039

    Article  MathSciNet  Google Scholar 

  13. Hughes G (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 14(1):55–63

    Article  Google Scholar 

  14. Ishigami T, Homma T (1990) An importance quantification technique in uncertainty analysis for computer models. In: Proceedings of first international symposium on uncertainty modeling and analysis. IEEE, pp 398–403

    Google Scholar 

  15. Jin R (2004) Enhancements of metamodeling techniques in engineering design. PhD thesis, University of Illinois at Chicago

    Google Scholar 

  16. Lehmensiek R, Meyer P, Muller M (2002) Adaptive sampling applied to multivariate, multiple output rational interpolation models with applications to microwave circuits. Int J RF Microw Comput Aided Eng 12(4):332–340

    Article  Google Scholar 

  17. Liu Q, Feng B, Liu Z, Zhang H (2017) The improvement of a variance-based sensitivity analysis method and its application to a ship hull optimization model. J Mar Sci Technol 22(4):694–709

    Article  Google Scholar 

  18. Morris M (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174

    Article  Google Scholar 

  19. Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press

    Google Scholar 

  20. Sacks J, Welch W, Mitchell T, Wynn H (1989) Design and analysis of computer experiments. Stat Sci 409–423

    Article  MathSciNet  Google Scholar 

  21. Saltelli A (2002a) Making best use of model valuations to compute sensitivity indices. Comput Phys Commun 145:280–297

    Article  Google Scholar 

  22. Saltelli A (2002b) Sensitivity analysis for importance assessment. Risk Anal 22(3):579–590

    Article  Google Scholar 

  23. Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models. Wiley

    Google Scholar 

  24. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. Wiley

    Google Scholar 

  25. Santner T, Williams B, Notz W (2003) The design and analysis of computer experiments. Springer series in statistics. Springer-Verlag, New York

    Book  Google Scholar 

  26. Sobol I (1993) Sensitivity analysis for nonlinear mathematical models. Math Model Comput Exp 1:407–414

    MATH  Google Scholar 

  27. Sobol I (2001) Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Math Comput Simul 55(1–3):271–280

    Article  MathSciNet  Google Scholar 

  28. Sobol I, Kucherenko S (2009) Derivative based global sensitivity measures and their link with global sensitivity indices. Math Comput Simul 79(10):3009–3017

    Article  MathSciNet  Google Scholar 

  29. Sudret B, Mai C (2015) Computing derivative-based global sensitivity measures using polynomial chaos expansions. Reliab Eng Syst Saf 134:241–250

    Article  Google Scholar 

  30. Suykens J, Gestel TV, Brabanter JD, Moor BD, Vandewalle J (2002) Least squares support vector machines. World Scientific Publishing Co. Pte Ltd, Singapore

    Book  Google Scholar 

  31. Van Steenkiste T, van der Herten J, Couckuyt I, Dhaene T (2016) Sensitivity analysis of expensive black-box systems using metamodeling. In: 2016 winter simulation conference (WSC). IEEE, pp 578–589

    Google Scholar 

  32. Van Steenkiste T, van der Herten J, Couckuyt I, Dhaene T (2018) Sequential sensitivity analysis of expensive black-box simulators with metamodelling. Appl Math Model 61:668–681

    Article  MathSciNet  Google Scholar 

  33. Vu KK, D’Ambrosio C, Hamadi Y, Liberti L (2017) Surrogate-based methods for black-box optimization. Int Trans Oper Res 24(3):393–424

    Article  MathSciNet  Google Scholar 

  34. Wang G, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. J Mech Design 129(4):370–380

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Van Steenkiste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Steenkiste, T., van der Herten, J., Couckuyt, I., Dhaene, T. (2019). Data-Efficient Sensitivity Analysis with Surrogate Modeling. In: Canavero, F. (eds) Uncertainty Modeling for Engineering Applications. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-04870-9_4

Download citation

Publish with us

Policies and ethics