Skip to main content

Quadrature Strategies for Constructing Polynomial Approximations

  • Chapter
  • First Online:
Uncertainty Modeling for Engineering Applications

Part of the book series: PoliTO Springer Series ((PTSS))

Abstract

Finding suitable points for multivariate polynomial interpolation and approximation is a challenging task. Yet, despite this challenge, there has been tremendous research dedicated to this singular cause. In this paper, we begin by reviewing classical methods for finding suitable quadrature points for polynomial approximation in both the univariate and multivariate setting. Then, we categorize recent advances into those that propose a new sampling approach, and those centered on an optimization strategy. The sampling approaches yield a favorable discretization of the domain, while the optimization methods pick a subset of the discretized samples that minimize certain objectives. While not all strategies follow this two-stage approach, most do. Sampling techniques covered include subsampling quadratures, Christoffel, induced and Monte Carlo methods. Optimization methods discussed range from linear programming ideas and Newton’s method to greedy procedures from numerical linear algebra. Our exposition is aided by examples that implement some of the aforementioned strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Known colloquially as the Jacobi matrix.

  2. 2.

    In the case of data-driven distributions, kernel density estimation or even a maximum likelihood estimation may be required to obtain a probability distribution that can be used by the discretized Stieltjes procedure.

  3. 3.

    The codes to replicate the figures in this paper can be found at the website: www.effective-quadratures.org/publications.

  4. 4.

    By solving the basis pursuit (and de-noising) problem.

References

  1. Adcock B, Huybrechs D (2018) Approximating smooth, multivariate functions on irregular domains. arXiv:1802.00602

  2. Bian F, Kempe D, Govindan R (2006) Utility based sensor selection. In: Proceedings of the 5th international conference on information processing in sensor networks, pp 11–18

    Google Scholar 

  3. Björck Å (2016) Numerical methods in matrix computations. Springer

    Google Scholar 

  4. Blatman G, Sudret B (2011) Adaptive sparse polynomial chaos expansion based on least angle regression. J Comput Phys 230(6):2345–2367

    Article  MathSciNet  MATH  Google Scholar 

  5. Bos L, Caliari M, De Marchi S, Vianello M (2006) Bivariate interpolation at Xu points: results, extensions and applications. Electron Trans Numer Anal 25:1–16

    Google Scholar 

  6. Bos L, Caliari M, De Marchi S, Vianello M, Xu Y (2006) Bivariate Lagrange interpolation at the Padua points: the generating curve approach. J Approx Theory 143(1):15–25

    Article  MathSciNet  MATH  Google Scholar 

  7. Bos L, De Marchi S, Sommariva A, Vianello M (2010) Computing multivariate Fekete and Leja points by numerical linear algebra. SIAM J Numer Anal 48(5):1984–1999

    Article  MathSciNet  MATH  Google Scholar 

  8. Bos L, De Marchi S, Vianello M, Xu Y (2007) Bivariate Lagrange interpolation at the Padua points: the ideal theory approach. Numer Math 108(1):43–57

    Article  MathSciNet  MATH  Google Scholar 

  9. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J et al (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    Article  MATH  MathSciNet  Google Scholar 

  10. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press

    Google Scholar 

  11. Burkardt J (2014) Slow exponential growth for Clenshaw Curtis sparse grids

    Google Scholar 

  12. Caliari M, De Marchi S, Sommariva A, Vianello M (2011) Padua2DM: fast interpolation and cubature at the Padua points in Matlab/Octave. Numer Algorithm 56(1):45–60

    Article  MathSciNet  MATH  Google Scholar 

  13. Chan TF, Hansen PC (1994) Low-rank revealing QR factorizations. Numer Linear Algebra Appl 1(1):33–44

    Article  MathSciNet  MATH  Google Scholar 

  14. Chandrasekaran S, Ipsen ICF (1994) On rank-revealing factorisations. SIAM J Matrix Anal Appl 15(2):592–622

    Article  MathSciNet  MATH  Google Scholar 

  15. Chkifa A, Cohen A, Migliorati G, Nobile F, Tempone R (2015) Discrete least squares polynomial approximation with random evaluations—application to parametric and stochastic elliptic PDEs. ESAIM Math Model Numer Anal 49(3):815–837

    Article  MathSciNet  MATH  Google Scholar 

  16. Çivril A, Magdon-Ismail M (2009) On selecting a maximum volume sub-matrix of a matrix and related problems. Theor Comput Sci 410(47–49):4801–4811

    Article  MathSciNet  MATH  Google Scholar 

  17. Cohen A, Davenport MA, Leviatan D (2013) On the stability and accuracy of least squares approximations. Found Comput Math 13(5):819–834

    Article  MathSciNet  MATH  Google Scholar 

  18. Cohen A, Migliorati G (2017) Optimal weighted least-squares methods. SMAI J Comput Math 3:181–203

    Article  MathSciNet  MATH  Google Scholar 

  19. Conrad PR, Marzouk YM (2013) Adaptive Smolyak pseudospectral approximations. SIAM J Sci Comput 35(6):A2643–A2670

    Article  MathSciNet  MATH  Google Scholar 

  20. Davis PJ, Rabinowitz P (2007) Methods of numerical integration. Courier Corporation

    Google Scholar 

  21. Dax A (2000) A modified Gram–Schmidt algorithm with iterative orthogonalization and column pivoting. Linear Algebra Appl 310(1–3):25–42

    Article  MathSciNet  MATH  Google Scholar 

  22. Deshpande A, Rademacher L (2010) Efficient volume sampling for row/column subset selection. In: 2010 51st annual IEEE symposium on foundations of computer science (FOCS). IEEE, pp 329–338

    Google Scholar 

  23. Duersch JA, Ming G (2017) Randomized QR with column pivoting. SIAM J Sci Comput 39(4):C263–C291

    Article  MathSciNet  MATH  Google Scholar 

  24. Gautschi W (1981) A survey of Gauss–Christoffel quadrature formulae In: EB Christoffel. Springer, pp 72–147

    Google Scholar 

  25. Gautschi W (1985) Orthogonal polynomialsconstructive theory and applications. J Comput Appl Math 12:61–76

    Article  MathSciNet  MATH  Google Scholar 

  26. Gautschi W (2004) Orthogonal polynomials: computation and approximation. Oxford University Press on Demand

    Google Scholar 

  27. Gentleman WM (1972) Implementing Clenshaw-Curtis quadrature, I methodology and experience. Commun ACM 15(5):337–342

    Article  MathSciNet  MATH  Google Scholar 

  28. Gerstner T, Griebel M (1998) Numerical integration using sparse grids. Numer Algorithm 18(3):209–232

    Google Scholar 

  29. Ghili S, Iaccarino G (2017) Least squares approximation of polynomial chaos expansions with optimized grid points. SIAM J Sci Comput 39(5):A1991–A2019

    Article  MathSciNet  MATH  Google Scholar 

  30. Ghisu T, Shahpar S (2017) Toward affordable uncertainty quantification for industrial problems: Part II turbomachinery application. ASME Turbo Expo GT2017–64845:2017

    Google Scholar 

  31. Golub GH, Van Loan CF (2012) Matrix computations, vol 4. JHU Press

    Google Scholar 

  32. Golub GH, Welsch JH (1969) Calculation of Gauss quadrature rules. Math Comput 23(106):221–230

    Article  MathSciNet  MATH  Google Scholar 

  33. Guo L, Narayan A, Yan L, Zhou T (2018) Weighted approximate Fekete points: sampling for least-squares polynomial approximation. SIAM J Sci Comput 40(1):A366–A387

    Article  MathSciNet  MATH  Google Scholar 

  34. Hadigol M, Doostan A (2017) Least squares polynomial chaos expansion: a review of sampling strategies. Comput Methods Appl Mech Eng

    Google Scholar 

  35. Hampton J, Doostan A (2015) Coherence motivated sampling and convergence analysis of least squares polynomial chaos regression. Comput Methods Appl Mech Eng 290:73–97

    Article  MathSciNet  MATH  Google Scholar 

  36. Hovland GE, McCarragher BJ (1997) Dynamic sensor selection for robotic systems. In: 1997 Proceedings of the IEEE international conference on robotics and automation, vol 1. IEEE, pp 272–277

    Google Scholar 

  37. Jakeman JD, Narayan A (2017) Generation and application of multivariate polynomial quadrature rules. arXiv:1711.00506

  38. Joshi S, Boyd S (2009) Sensor selection via convex optimization. IEEE Trans Signal Process 57(2):451–462

    Article  MathSciNet  MATH  Google Scholar 

  39. Kalra TS, Aretxabaleta A, Seshadri P, Ganju NK, Beudin A (2017) Sensitivity analysis of a coupled hydrodynamic-vegetation model using the effectively subsampled quadratures method. Geosci Model Develop Discuss 1–28:2017

    Google Scholar 

  40. Keshavarzzadeh V, Kirby RM, Narayan A (2018) Numerical integration in multiple dimensions with designed quadrature. arXiv:1804.06501

  41. Kincaid RK, Padula SL (2002) D-optimal designs for sensor and actuator locations. Comput Oper Res 29(6):701–713

    Article  MATH  Google Scholar 

  42. Laurie D (1997) Calculation of Gauss-Kronrod quadrature rules. Math Comput Am Math Soc 66(219):1133–1145

    Article  MathSciNet  MATH  Google Scholar 

  43. Martinsson P-G, Ort GQ, Heavner N, van de Geijn R (2017) Householder QR factorization with randomization for column pivoting (HQRRP). SIAM J Sci Comput 39(2):C96–C115

    Article  MathSciNet  MATH  Google Scholar 

  44. Migliorati G, Nobile F (2015) Analysis of discrete least squares on multivariate polynomial spaces with evaluations at low-discrepancy point sets. J Complex 31(4):517–542

    Article  MathSciNet  MATH  Google Scholar 

  45. Migliorati G, Nobile F, Von Schwerin E, Tempone R (2014) Analysis of discrete \(L^2\) projection on polynomial spaces with random evaluations. Found Comput Math 14(3):419–456

    Google Scholar 

  46. Miller A (2002) Subset selection in regression. CRC Press

    Google Scholar 

  47. Miranian L, Ming G (2003) Strong rank revealing LU factorizations. Linear Algebra Appl 367:1–16

    Article  MathSciNet  MATH  Google Scholar 

  48. Narayan A (2017) Computation of induced orthogonal polynomial distributions. arXiv:1704.08465

  49. Narayan A, Jakeman J, Zhou T (2017) A Christoffel function weighted least squares algorithm for collocation approximations. Math Comput 86(306):1913–1947

    Article  MathSciNet  MATH  Google Scholar 

  50. Patterson TNL (1968) The optimum addition of points to quadrature formulae. Math Comput 22(104):847–856

    Article  MathSciNet  MATH  Google Scholar 

  51. Per Pettersson M, Iaccarino G, Nordstrom J (2015) Polynomial chaos methods for hyperbolic partial differential equations. In: Mathematical engineering. Springer. ISBN: 978-3-319-10713-4

    Google Scholar 

  52. Pflüger D, Peherstorfer B, Bungartz H-J (2010) Spatially adaptive sparse grids for high-dimensional data-driven problems. J Complex 26(5):508–522

    Article  MathSciNet  MATH  Google Scholar 

  53. Ryu EK, Boyd SP (2015) Extensions of Gauss quadrature via linear programming. Found Comput Math 15(4):953–971

    Article  MathSciNet  MATH  Google Scholar 

  54. Seshadri P, Constantine P, Iaccarino G, Parks G (2016) A density-matching approach for optimization under uncertainty. Comput Methods Appl Mech Eng 305:562–578

    Article  MathSciNet  MATH  Google Scholar 

  55. Seshadri P, Narayan A, Mahadevan S (2017) Effectively subsampled quadratures for least squares polynomial approximations. SIAM/ASA J Uncertain Quantif 5(1):1003–1023

    Article  MathSciNet  MATH  Google Scholar 

  56. Seshadri P, Parks G (2017) Effective-quadratures (EQ): polynomials for computational engineering studies. J Open Source Softw 2:166–166

    Article  Google Scholar 

  57. Seshadri P, Parks GT, Shahpar S (2014) Leakage uncertainties in compressors: the case of rotor 37. J Propuls Power 31(1):456–466

    Article  Google Scholar 

  58. Seshadri P, Shahpar S, Constantine P, Parks G, Adams M (2018) Turbomachinery active subspace performance maps. J Turbomach 140(4):041003

    Article  Google Scholar 

  59. Shin Y, Xiu D (2016) Nonadaptive quasi-optimal points selection for least squares linear regression. SIAM J Sci Comput 38(1):A385–A411

    Article  MathSciNet  MATH  Google Scholar 

  60. Shin Y, Xiu D (2016) On a near optimal sampling strategy for least squares polynomial regression. J Comput Phys 326:931–946

    Article  MathSciNet  MATH  Google Scholar 

  61. Shin Y, Xiu D (2017) A randomized algorithm for multivariate function approximation. SIAM J Sci Comput 39(3):A983–A1002

    Article  MathSciNet  MATH  Google Scholar 

  62. Smolyak SA (1963) Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl Akad Nauk SSSR 4:123

    Google Scholar 

  63. Strohmer T, Vershynin R (2009) A randomized Kaczmarz algorithm with exponential convergence. J Fourier Anal Appl 15(2):262

    Article  MathSciNet  MATH  Google Scholar 

  64. Tang G, Iaccarino G (2014) Subsampled Gauss quadrature nodes for estimating polynomial chaos expansions. SIAM/ASA J Uncertain Quantif 2(1):423–443

    Article  MathSciNet  MATH  Google Scholar 

  65. Trefethen LN (2000) Spectral methods in MATLAB. SIAM

    Google Scholar 

  66. Trefethen LN (2008) Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev 50(1):67–87

    Article  MathSciNet  MATH  Google Scholar 

  67. Trefethen LN (2017) Cubature approximation, and isotropy in the hypercube. SIAM Rev 59(3):469–491

    Article  MathSciNet  MATH  Google Scholar 

  68. Vandenberghe L, Boyd S, Wu S-P (1998) Determinant maximization with linear matrix inequality constraints. SIAM J Matrix Anal Appl 19(2):499–533

    Article  MathSciNet  MATH  Google Scholar 

  69. Wu K, Shin Y, Xiu D (2017) A randomized tensor quadrature method for high dimensional polynomial approximation. SIAM J Sci Comput 39(5):A1811–A1833

    Article  MathSciNet  MATH  Google Scholar 

  70. Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press

    Google Scholar 

  71. Zhou T, Narayan A, Xiu D (2015) Weighted discrete least-squares polynomial approximation using randomized quadratures. J Comput Phys 298:787–800

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was carried out while PS was visiting the Department of Mechanical, Chemical and Materials Engineering at Universitá di Cagliari in Cagliari, Sardinia; the financial support of the University’s Visiting Professor Program is gratefully acknowledged. The authors are also grateful to Akil Narayan for numerous discussions on polynomial approximations and quadratures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Iaccarino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seshadri, P., Iaccarino, G., Ghisu, T. (2019). Quadrature Strategies for Constructing Polynomial Approximations. In: Canavero, F. (eds) Uncertainty Modeling for Engineering Applications. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-04870-9_1

Download citation

Publish with us

Policies and ethics