Skip to main content

Classifying Compliant Manipulation

  • Chapter
  • First Online:
Cognitive Reasoning for Compliant Robot Manipulation

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 127))

Abstract

This chapter investigates the properties of compliant manipulation tasks in general, and wiping tasks in particular, in order to gain a better understanding of the problem. As a result, a taxonomy shall be presented to build the foundation for the development of suitable representations to plan, execute, and interpret wiping tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term tuple is generaly used to describe n-tuples in this manuscript.

References

  • Leidner, Daniel, Alexander Dietrich, Michael Beetz, and Alin Albu-Schäffer. 2016b. Knowledge-Enabled Parameterization of Whole-body Control Strategies For Compliant Service Robots. Autonomous Robots (AURO): Special Issue on Whole-Body Control of Contacts and Dynamics for Humanoid Robots 40(3): 519–536.

    Google Scholar 

  • Leidner, Daniel, Christoph Borst, Alexander Dietrich, and Alin Albu-Schäffer. 2015a. Classifying Compliant Manipulation Tasks for Automated Planning in Robotics. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1769–1776.

    Google Scholar 

  • Wörgötter, Florentin, Eren Erdal Aksoy, Norbert Kruger, Justus Piater, Ales Ude, and Minija Tamosiunaite. 2013. A Simple Ontology of Manipulation Actions Based on Hand-object Relations. IEEE Transactions on Autonomous Mental Development 5(2): 117–134.

    Google Scholar 

  • Bloomfield, Aaron, Yu Deng, Jeff Wampler, Pascale Rondot, Dina Harth, Mary McManus, and Norman Badler. 2003. A Taxonomy and Comparison of Haptic Actions for Disassembly Tasks. In Proceedings of the Virtual Reality Conference, 225–231.

    Google Scholar 

  • Vukobratović, Miomir K., and Veljko Potkonjak. 1999. Dynamics of Contact Tasks in Robotics. Part I: General Model of Robot Interacting with Environment. Mechanism and Machine Theory 34(6): 923–942.

    Google Scholar 

  • Cutkosky, Mark R. 1989. On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks. IEEE Transactions on Robotics and Automation 5(3): 269–279.

    Google Scholar 

  • Bullock, Ian M., Raymond R., Ma, and Aaron M., Dollar. 2013. A Hand-centric Classification of Human and Robot Dexterous Manipulation. IEEE Transactions on Haptics 6(2): 129–144.

    Google Scholar 

  • Daniel Morrow, J., and Pradeep K., Khosla. 1997. Manipulation Task Primitives for Composing Robot Skills. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 4, 3354–3359. IEEE.

    Google Scholar 

  • Kapandji, Ibrahim Adalbert, and Louis Henri Honoré. 1970. The Physiology of the Joints: Annotated Diagrams of the Mechanics of the Human Joints, vol. 1. E. & S. Livingstone London.

    Google Scholar 

  • Feix, Thomas, Roland Pawlik, Heinz-Bodo Schmiedmayer, Javier Romero, and Danica Kragic. 2009. A Comprehensive Grasp Taxonomy. In Robotics, Science and Systems: Workshop on Understanding the Human Hand for Advancing Robotic Manipulation, 2–3.

    Google Scholar 

  • Stansfield, Sharon A. 1991. Robotic Grasping of Unknown Objects: A Knowledge-Based Approach. The International Journal of Robotics Research 10(4): 314–326.

    Google Scholar 

  • Grebenstein, Markus, Alin Albu-Schäffer, Thomas Bahls, Maxime Chalon, Oliver Eiberger, Werner Friedl, Robin Gruber, Sami Haddadin, Ulrich Hagn, and Robert Haslinger, et al. 2011. The DLR Hand arm System. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 3175–3182.

    Google Scholar 

  • Chalon, Maxime, Alexander Dietrich, and Markus Grebenstein. 2014. The Thumb of the Anthropomorphic Awiwi Hand: From Concept To Evaluation. International Journal of Humanoid Robotics (IJHR) 11: 1450019.

    Google Scholar 

  • Liu, Jia, Fangxiaoyu Feng, Yuzuko C., Nakamura, and Nancy S., Pollard. 2016. Annotating Everyday Grasps in Action. In Dance Notations and Robot Motion, 263–282. Springer.

    Google Scholar 

  • Ghallab, Malik, Dana Nau, and Paolo Traverso. 2004. Automated Planning: Theory and Practice. Morgan Kaufmann.

    Google Scholar 

  • Williams, David, and Oussama Khatib. 1993. The Virtual Linkage: A Model for Internal Forces in Multi-grasp Manipulation. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 1025–1030.

    Google Scholar 

  • Leidner, Daniel, Selma Music, and Armin Wedler. 2015b. Robotic Deployment of Extraterrestrial Seismic Networks. In Proceedings of the 13th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA).

    Google Scholar 

  • Wimböck, Thomas, Benjamin Jahn, and Gerd Hirzinger. 2011. Synergy Level Impedance Control for Multifingered Hands. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 973–979.

    Google Scholar 

  • Stemmer, Andreas, Alin Albu-Schäffer, and Gerd Hirzinger. 2007. An Analytical Method for the Planning of Robust Assembly Tasks of Complex Shaped Planar Parts. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 317–323.

    Google Scholar 

  • Hogan, Neville. 1987. Stable Execution of Contact Tasks Using Impedance Control. In Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, 1047–1054.

    Google Scholar 

  • Xie, Yu, Dong Sun, Chong Liu, Ho Y., Tse, and Shuk H., Cheng. 2010. A Force Control Approach to a Robot-assisted Cell Microinjection System. International Journal of Robotics Research 29(9): 1222–1232.

    Google Scholar 

  • Dietrich, Alexander, Thomas Wimböck, Alin Albu-Schäffer, and Gerd Hirzinger. 2012. Reactive Whole-body Control: Dynamic Mobile Manipulation Using a Large Number of Actuated Degrees of Freedom. IEEE Robotics & Automation Magazine 19 (2): 20–33.

    Article  Google Scholar 

  • Cakmak, Maya, and Leila Takayama. 2013. Towards A Comprehensive Chore List for Domestic Robots. In Proceedings of the ACM/IEEE International Conference on Human-robot Interaction (HRI), 93–94.

    Google Scholar 

  • Ghallab, Malik, Adele Howe, Dave Christianson, Drew McDermott, Ashwin Ram, Manuela Veloso, Daniel Weld, and David Wilkins. 1998. PDDL - The Planning Domain Definition Language. AIPS98 Planning Committee 78(4): 1–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sebastian Leidner .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leidner, D.S. (2019). Classifying Compliant Manipulation. In: Cognitive Reasoning for Compliant Robot Manipulation. Springer Tracts in Advanced Robotics, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-04858-7_3

Download citation

Publish with us

Policies and ethics