Skip to main content

Efficient Distance Transform for Salient Region Detection

  • Chapter
  • First Online:

Abstract

The goal of salient region detection is to compute a saliency map that highlights the regions of salient objects in a scene. Recently, this problem has received a lot of research interest owing to its usefulness in many computer vision applications, e.g. object detection, action recognition, and various image/video processing applications. Due to the emerging applications on mobile devices and large-scale datasets, a desirable salient region detection method should not only output high quality saliency maps, but should also be highly computationally efficient. In this chapter, we address both the quality and speed requirements for salient region detection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A set S is connected if any pair of seeds are connected by a path in S.

  2. 2.

    http://www.cs.bu.edu/groups/ivc/fastMBD/.

  3. 3.

    We use an implementation of GS provided by the authors of SO [208].

References

  1. Achanta, R., Hemami, S., Estrada, F., and Susstrunk, S. Frequency-tuned salient region detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009).

    Google Scholar 

  2. Borji, A., Sihite, D. N., and Itti, L. Salient object detection: A benchmark. In European Conference on Computer Vision (ECCV) (2012).

    Chapter  Google Scholar 

  3. Cheng, M., Zhang, G., Mitra, N., Huang, X., and Hu, S. Global contrast based salient region detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011).

    Google Scholar 

  4. Cheng, M.-M., Mitra, N. J., Huang, X., Torr, P. H. S., and Hu, S.-M. Global contrast based salient region detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 37, 3 (2015), 569–582.

    Article  Google Scholar 

  5. Cheng, M.-M., Warrell, J., Lin, W.-Y., Zheng, S., Vineet, V., and Crook, N. Efficient salient region detection with soft image abstraction. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).

    Google Scholar 

  6. Ciesielski, K. C., Strand, R., Malmberg, F., and Saha, P. K. Efficient algorithm for finding the exact minimum barrier distance. Computer Vision and Image Understanding (CVIU) 123 (2014), 53–64.

    Article  Google Scholar 

  7. Ciesielski, K. C., and Udupa, J. K. A framework for comparing different image segmentation methods and its use in studying equivalences between level set and fuzzy connectedness frameworks. Computer Vision and Image Understanding (CVIU) 115, 6 (2011), 721–734.

    Article  Google Scholar 

  8. Danielsson, P.-E. Euclidean distance mapping. Computer Graphics and image processing 14, 3 (1980), 227–248.

    Article  Google Scholar 

  9. Falcão, A. X., Stolfi, J., and de Alencar Lotufo, R. The image foresting transform: Theory, algorithms, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 26, 1 (2004), 19–29.

    Article  Google Scholar 

  10. Goferman, S., Zelnik-Manor, L., and Tal, A. Context-aware saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 34, 10 (2012), 1915–1926.

    Article  Google Scholar 

  11. Jiang, B., Zhang, L., Lu, H., Yang, C., and Yang, M.-H. Saliency detection via absorbing Markov chain. In IEEE International Conference on Computer Vision (ICCV) (2013).

    Google Scholar 

  12. Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., and Li, S. Salient object detection: A discriminative regional feature integration approach. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).

    Google Scholar 

  13. Krähenbühl, P., and Koltun, V. Geodesic object proposals. In European Conference on Computer Vision (ECCV) (2014).

    Google Scholar 

  14. Li, X., Lu, H., Zhang, L., Ruan, X., and Yang, M.-H. Saliency detection via dense and sparse reconstruction. In IEEE International Conference on Computer Vision (ICCV) (2013).

    Google Scholar 

  15. Li, Y., Hou, X., Koch, C., Rehg, J. M., and Yuille, A. L. The secrets of salient object segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014).

    Google Scholar 

  16. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., and Shum, H.-Y. Learning to detect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 33, 2 (2011), 353–367.

    Google Scholar 

  17. Lu, S., Mahadevan, V., and Vasconcelos, N. Learning optimal seeds for diffusion-based salient object detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014).

    Google Scholar 

  18. Margolin, R., Zelnik-Manor, L., and Tal, A. How to evaluate foreground maps? In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014).

    Google Scholar 

  19. Rosenfeld, A., and Pfaltz, J. L. Distance functions on digital pictures. Pattern recognition 1, 1 (1968), 33–61.

    Article  MathSciNet  Google Scholar 

  20. Rosenholtz, R. Search asymmetries? what search asymmetries? Perception & Psychophysics 63, 3 (2001), 476–489.

    Article  Google Scholar 

  21. Shen, X., and Wu, Y. A unified approach to salient object detection via low rank matrix recovery. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012).

    Google Scholar 

  22. Strand, R., Ciesielski, K. C., Malmberg, F., and Saha, P. K. The minimum barrier distance. Computer Vision and Image Understanding (CVIU) 117, 4 (2013), 429–437.

    Article  Google Scholar 

  23. Toivanen, P. J. New geodesic distance transforms for gray-scale images. Pattern Recognition Letters 17, 5 (1996), 437–450.

    Article  Google Scholar 

  24. Vincent, L. Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Transactions on Image Processing (TIP) 2, 2 (1993), 176–201.

    Article  Google Scholar 

  25. Wei, Y., Wen, F., Zhu, W., and Sun, J. Geodesic saliency using background priors. In European Conference on Computer Vision (ECCV) (2012).

    Chapter  Google Scholar 

  26. Yan, Q., Xu, L., Shi, J., and Jia, J. Hierarchical saliency detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).

    Google Scholar 

  27. Yang, C., Zhang, L., Lu, H., Ruan, X., and Yang, M.-H. Saliency detection via graph-based manifold ranking. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013).

    Google Scholar 

  28. Zhang, J., and Sclaroff, S. saliency detection: a Boolean map approach. In IEEE International Conference on Computer Vision (ICCV) (2013).

    Google Scholar 

  29. Zhang, J., and Sclaroff, S. Exploiting surroundedness for saliency detection: a Boolean map approach. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 38, 5 (2016), 889–902.

    Article  Google Scholar 

  30. Zhu, W., Liang, S., Wei, Y., and Sun, J. Saliency optimization from robust background detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Malmberg, F., Sclaroff, S. (2019). Efficient Distance Transform for Salient Region Detection. In: Visual Saliency: From Pixel-Level to Object-Level Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-04831-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04831-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04830-3

  • Online ISBN: 978-3-030-04831-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics