Skip to main content

Quadro-Cubic Cremona Transformations and Feigin-Odesskii-Sklyanin Algebras with 5 Generators

  • Conference paper
  • First Online:
Recent Developments in Integrable Systems and Related Topics of Mathematical Physics (MP 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 273))

Included in the following conference series:

Abstract

We study different algebraic and geometric properties of Heisenberg (H-) invariant Poisson polynomial algebras with 5 generators. These algebras are unimodular, and the elliptic Feigin-Odesskii-Sklyanin Poisson algebras \(q_{n,k}(Y)\) constitute the main important example. We discuss all the quadratic H-invariant Poisson tensors on \({\mathbb C}^5\). For the Sklyanin algebras \(q_{5,1}(Y)\) and \(q_{5;2}(Y)\), we explicitly write the Poisson morphisms on the moduli space of the vector bundles on the normal elliptic curve Y in \(\mathbb P^4\), studied by Polishchuk and Odesskii-Feigin as the quadro-cubic Cremona transformation on \(\mathbb P^4\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I am grateful to Brent Pym for enlightened discussion of this point.

  2. 2.

    During a discussion with Sasha Odesskii, we found out that he independently obtained the same result, but it is still unpublished.

  3. 3.

    This means that the embedding of Y in \(\mathbb P^4\) is given by complete linear system.

  4. 4.

    A ruled degree 5 surface in \(\mathbb P^4.\)

  5. 5.

    In fact the entries of the Moore-like syzygy matrix depends on \(\imath (z)\) where \(\imath (z_i)=z_i\) is the involution. But we need the matrix \(L_{\lambda }(z)\) to describe the surfaces of symplectic foliations which are \(\imath -\)invariants (compare with [4]).

References

  1. Artin, M., Schelter, W.F.: Graded algebras of global dimension \(3\). Adv. Math. 66(2), 171–216 (1987)

    Article  MathSciNet  Google Scholar 

  2. Atiyah, M.: Vector bundles over an elliptic curves. Proc. Lond. Math. Soc. VII(3), 414-452 (1957)

    Article  MathSciNet  Google Scholar 

  3. Auret, A., Decker, W., Hulek, K., Popesku, S., Ranestad, K.: The geometry of Bielliptic surfaces in \(\mathbb{P}^4\). Int. J. of Math. 4, 873–902 (1993)

    Article  MathSciNet  Google Scholar 

  4. Auret, A., Decker, W., Hulek, K., Popesku, S., Ranestad, K.: Syzygies of abelian and bielliptic surfaces in \(\mathbb{P}^4\). Int. J. Math. 08, 849 (1997)

    Article  MathSciNet  Google Scholar 

  5. Bart, W., Hulek, K., Moore, R.: Shioda modular surface \(S(5)\) and the Horrocks-Mumford bundle, Vector bundles on algebraic varieties. In: Papers presented at the Bombay colloquim 1984, pp. 35-106. Oxford University Press, Bombay (1987)

    Google Scholar 

  6. Bianchi, L.: Ueber die Normsalformen dritter und fünfter Stufe des Elliptischen Integrals Ersten Gattung. Math. Ann. 17, 234–262 (1880)

    Article  MathSciNet  Google Scholar 

  7. Crauder, B., Katz, S.: Cremona transformations with smooth irreducible fundamental locus. Am. J. Math. 111, 289–309 (1989)

    Article  MathSciNet  Google Scholar 

  8. Feĭgin, B.L., Odesskiĭ, A.V.: Sklyanin’s elliptic algebras and moduli of vector bundles on elliptic curves. RIMS Kyoto University preprint (1998)

    Google Scholar 

  9. Feĭgin, B.L., Odesskiĭ, A.V.: Vector bundles on an elliptic curve and Sklyanin algebras (Russian) 268(2), 285–287 (1988) (prepr. BITP, Kiev)

    Google Scholar 

  10. Feĭgin, B.L., Odesskiĭ, A.V.: Vector bundles on an elliptic curve and Sklyanin algebras. Topics in quantum groups and finite-type invariants. Am. Math. Soc. Transl. Ser. Am. Math. Soc. 185(2), 65–84 (1998) (Providence, RI)

    Google Scholar 

  11. Fisher, T.: Genus one curves defined by pfaffians 185(2), 65–84 (2006)

    Google Scholar 

  12. Fisher, T.: Invariant theory for the elliptic normal quintic I. Twist of \(X(5)\). Math. Ann. 356(2), 589–616 (2013)

    Google Scholar 

  13. Fisher, T.: The invariants of a genus 1 curve. Proc. Lond. Math. Soc. 97(3), 753–782 (2008)

    Article  MathSciNet  Google Scholar 

  14. Fisher, T.: Pfaffian presentation of elliptic normal curves. Trans. Am. Math. Soc. 362(5), 2525–2540 (2010)

    Article  MathSciNet  Google Scholar 

  15. Hulek, K.: Projective geometry of elliptic curves. SMF, Astérisque, vol.137 (1986). https://books.google.ru/books?id=BgioAAAAIAAJ

  16. Hulek, K., Katz, S., Schreyer, F.-O.: Cremona transformations and syzygies. Math. Z. 209, 419–443 (1992)

    Article  MathSciNet  Google Scholar 

  17. Klein, F.: Vorlesungen über das Ikosaeder und die Auflösungen der Gleichungen von fünftem Grade. Kommentiert und herausgegeben von P. Slodowy, Birkhäuser (1992)

    Google Scholar 

  18. Moore, R.: Heisenberg-invariant quintic 3-folds and sections of the Horrocks-Mumford bundle. Research Report No. 33-1985, Department of Mathematics, University of Canberra

    Google Scholar 

  19. Nambu, Yo.: Generalized Hamiltonian dynamics. Phys. Rev. D 7(3), 2405–2412 (1973)

    Article  MathSciNet  Google Scholar 

  20. Odesskiĭ, A.V., Feĭgin, B.L.: Sklyanin’s elliptic algebras. (Russian) Funktsional. Anal. i Prilozhen. 23(3), 45–54 (1989). (Translation in Funct. Anal. Appl.23(3), 207–214, 1989)

    Google Scholar 

  21. Odesskiĭ, A.V., Rubtsov, V.N.: Integrable systems associated with elliptic algebras. Quantum groups, 81–105. (IRMA Lect. Math. Theor. Phys., 12, Eur. Math. Soc. Zurich 2008)

    Google Scholar 

  22. Odesskiĭ, A.V., Rubtsov, V.N.: Polynomial Poisson algebras with a regular structure of symplectic leaves. (Russian) Teoret. Mat. Fiz. 133(1), 3–23 (2002)

    Google Scholar 

  23. Odesskiĭ, A.V.: Rational degeneration of elliptic quadratic algebras. Infinite analysis, Part A, B, Kyoto, pp. 773–779 (1991). (Adv. Ser. Math. Phys. 16, World Sci. Publ., River Edge, NJ, 1992)

    Google Scholar 

  24. Odesskii, A.V.: Elliptic algebras. Russ. Math. Surv. 57(6), 1127–1162 (2002)

    Article  MathSciNet  Google Scholar 

  25. Odesskii, A.V.: Bihamiltonian elliptic structures. Mosc. Math. J. 982(4), 941–946 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Ortenzi G., Rubtsov, V., Tagne Pelap, S.R.: On the Heisenberg invariance and the elliptic Poisson tensors. Lett. Math. Phys. 96(1–3), 263–284 (2011)

    Article  MathSciNet  Google Scholar 

  27. Ortenzi, G., Rubtsov, V., Tagne Pelap, S.R.: Integer solutions of integral inequalities and \(H\)-invariant Jacobian Poisson structures. Adv. Math. Phys. 2011, 252186 (2011)

    Article  MathSciNet  Google Scholar 

  28. Polishchuk, A.: Algebraic geometry of Poisson brackets. J. Math. Sci. 84, 1413–1444 (1997)

    Article  MathSciNet  Google Scholar 

  29. Polishchuk, A.: Poisson structures and birational morphisms associated with bundles on elliptic curves. Int. Math. Res. Notes 13, 683–703 (1998)

    Article  MathSciNet  Google Scholar 

  30. Pym, B.: Constructions and classifications of projective Poisson varieties. arXiv:1701.08852

  31. Semple, J.G., Roth, L.: Projective algebraic geometry. Oxford University Press (1986)

    Google Scholar 

  32. Semple, J.G.: Cremona transformations of space of four dimensions by means of quadrics and the reverse transformations. Phil. Trans. R. Soc. Lond. Ser. A. 228, 331–376 (1929)

    Article  Google Scholar 

  33. Sklyanin, E.K.: Some algebraic structures connected with the Yang-Baxter equation. (Russian) Funktsional. Anal. i Prilozhen. 16(4), 27–34 (1982)

    Google Scholar 

  34. Sklyanin, E.K.: Some algebraic structures connected with the Yang-Baxter equation. Representations of a quantum algebra. (Russian) Funktsional. Anal. i Prilozhen. 17(4), 34–48 (1983)

    Google Scholar 

  35. Smith, S.P., Stafford, J.T.: Regularity of the four-dimensional Sklyanin algebra. Compositio Math. 83(3), 259–289 (1992)

    MathSciNet  MATH  Google Scholar 

  36. Tagne Pelap, S.R.: Poisson (co)homology of polynomial Poisson algebras in dimension four: Sklyanin’s case. J. Algebra 322(4), 1151–1169 (2009)

    Article  MathSciNet  Google Scholar 

  37. Tagne Pelap, S.R.: On the Hochschild homology of elliptic Sklyanin algebras. Lett. Math. Phys. 87(4), 267–281 (2009)

    Article  MathSciNet  Google Scholar 

  38. Takhtajan, Leon: On foundation of the generalized Nambu mechanics. Commun. Math. Phys. 160(2), 295–315 (1994)

    Article  MathSciNet  Google Scholar 

  39. Tate, J., Van den Bergh, M.: Homological properties of Sklyanin algebras. Invent. Math. 124(1–3), 619–647 (1996)

    Article  MathSciNet  Google Scholar 

  40. Tu, L.W.: Semistable bundles over an elliptic curve. Adv. Math. 98(1), 1–26 (1993)

    Article  MathSciNet  Google Scholar 

  41. Hua, Z., Polishchuk, A.: Shifted Poisson structures and moduli spaces of complexes. arXiv: math:1706.09965

Download references

Acknowledgements

During this work the author benefited from many useful discussions and suggestions of many colleagues. He is thankful to Brent Pym with whom he discussed the holomorphic Poisson geometry, to Sasha Polishchuk for his help with Algebraic Geometry and to Alexander Odesskii who taught him the Elliptic Algebras. Igor Reider had clarified some question and helped to understand the relation with his own unpublished results.

Some parts of this paper are based on previously published results of the author in a collaboration with Giovanni Ortenzi and Serge Tagne Pelap as well as with A. Odesskii. He is grateful to them for their collaboration.

A special thank to Rubik Pogossyan who had verified with Mathematica Package the author’s hint statement about the form and exact value of the determinant of the Jacobian for cubic “Inverse” Cremona map.

He had benefited from a lot of numerous conversations with Boris Feigin and Alexei Gorodentsev on various related subjects.

Finally, this work would have never been written without two author’s talks on the Moscow HSE Bogomolov Laboratory Seminar in June 2016 and on the 1st International Conference of Mathematical Physics at Kezenoy-Am in November 2016. He greatly acknowledges the invitation of Misha Verbitsky to Moscow and of V. Buchstaber and A. Mikhailov to the Chechen Republic. His special thanks to Dima Grinev and Sotiris Konstantinou-Rizos for their hospitality, excellent organisation of the Conference at Kezenoy-Am and inspiration. He also thanks Sotiris Konstantinou-Rizos for his great patience and valuable help while the text was being prepared to submission.

His work was partly supported by the Russian Foundation for Basic Research (Projects 18-01-00461 and 16-51-53034-GFEN). Part of this work was carried out within the framework of the State Programme of the Ministry of Education and Science of the Russian Federation, project 1.12873.2018/12.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rubtsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rubtsov, V. (2018). Quadro-Cubic Cremona Transformations and Feigin-Odesskii-Sklyanin Algebras with 5 Generators. In: Buchstaber, V., Konstantinou-Rizos, S., Mikhailov, A. (eds) Recent Developments in Integrable Systems and Related Topics of Mathematical Physics. MP 2016. Springer Proceedings in Mathematics & Statistics, vol 273. Springer, Cham. https://doi.org/10.1007/978-3-030-04807-5_6

Download citation

Publish with us

Policies and ethics