Skip to main content

Electrospun Polymeric Nanofibers: Fundamental Aspects of Electrospinning Processes, Optimization of Electrospinning Parameters, Properties, and Applications

  • Chapter
  • First Online:
Polymer Nanocomposites in Biomedical Engineering

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Abstract

Nanotechnology is a novel interdisciplinary field of science which has captured profound attention in all research areas due to its unique applications. Polymer nanofibers (PNFs) are one-dimensional (1D) fibers having diameters less than 1000 nanometers (nm). Electrospinning (ES) has been recognized as one of the most efficient, simple, versatile, and cost-effective methods for the fabrication of PNFs, among various other techniques such as phase separation, template synthesis, and self-assembly. The electrospun PNFs are being increasingly applied to biomedical fields due to its high surface-area-to-volume ratio, high porosity, and easy tuning of their structures, functionalities, and properties. Hence, these electrospun PNFs owing to their high specific surface area create a three-dimensional (3D) porous structure that mimics the native extracellular matrix (ECM), vitally useful in biomedical applications. In this chapter, we briefly discuss the fundamental aspects of the ES process and the properties of electrospun PNFs. This chapter also attempts to highlight the applications and importance of nanofibers in various fields of biomedicine such as tissue engineering, drug delivery, and wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrigo M, McArthur SL, Kingshott PL (2014) Electrospun nanofibres as dressings for chronic wound care: advance, challenges and future prospects. Macromol Biosci 14(6):772–792

    Article  Google Scholar 

  • Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621

    Article  Google Scholar 

  • Ahmad J, Deshmukh K, Hagg MB (2013) Influence of TiO2 on the chemical, mechanical and gas separation properties of polyvinyl alcohol—titanium dioxide (PVA-TiO2) nanocomposite membrane. Int J Polym Anal Charact 18:287–296

    Article  Google Scholar 

  • Ahmad J, Deshmukh K, Habib M, Hagg MB (2014) Influence of TiO2 nanoparticles on morphological thermal and solution properties of PVA/TiO2 nanocomposite membranes. Arab J Sci Eng 39:6805–6814

    Article  Google Scholar 

  • Asghari F, Samiei M, Adibkia K, Akbarzadeh A, Davaran S (2017) Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif Cells Nanomed Biotechnol 45(2):185–192

    Article  Google Scholar 

  • Awang N, Ismail AF, Jaafar J, Matsuura T, Junoh H, Othman MHD, Rahman MA (2015) Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: a review. React Funct Polym 86:248–258

    Article  Google Scholar 

  • Aytimur A, Uslu I (2014) Promising materials for wound dressing: PVA/PAA/PVP electrospun nanofibers. Polym Plast Technol Eng 53(7):655–660

    Article  Google Scholar 

  • Azuma K, Izumi R, Osaki T, Ifuku S, Morimoto M, Saimoto H, Minami S, Okamoto Y (2015) Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater 6(1):104–142

    Article  Google Scholar 

  • Baptista AC, Ferreira I, Borges JP (2013) Electrospun fibers in composite materials for medical applications. J Compos Biodegradable Polym 1(1):56–65

    Article  Google Scholar 

  • Deshmukh K, Ahmad J, Hagg MB (2014) Fabrication and characterization of polymer blends consisting of cationic polyallylamine and anionic polyvinyl alcohol. Ionics 20:957–967

    Article  Google Scholar 

  • Deshmukh K, Ahamed MB, Deshmukh RR, Bhagat PR, Pasha SKK, Bhagat A, Shirbhate R, Telare F, Lakhani C (2015a) Influence of K2CrO4 doping on the structural, optical and dielectric properties of polyvinyl alcohol/K2CrO4 composite films. Polym Plast Technol Eng 55:231–241

    Article  Google Scholar 

  • Deshmukh K, Ahamed MB, Pasha SKK, Deshmukh RR, Bhagat PR (2015b) Highly dispersible graphene oxide reinforced polypyrole/polyvinyl alcohol blend nanocomposites with high dielectric constant and low dielectric loss. RSC Adv 5:61933–61945

    Article  Google Scholar 

  • Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Chidambaram K, Sadasivuni KK, Ponnamma D, AlMaadeed MAA (2016a) Eco-friendly synthesis of graphene oxide reinforced hydroxypropyl methyl cellulose/polyvinyl alcohol blend nanocomposites filled with zinc oxide nanoparticles for high-k capacitor applications. Polym Plast Technol Eng 12:1240–1253

    Article  Google Scholar 

  • Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Pasha SKK, AlMaadeed MAA, Chidambaram K (2016b) Graphene oxide reinforced polyvinyl alcohol blend composites as high performance dielectric materials. J Polym Res 23:159

    Article  Google Scholar 

  • Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Sadasivuni SKK, Ponnamma D, Chidambaram K (2016c) Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage applications. Eur Polymer J 76:14–27

    Article  Google Scholar 

  • Deshmukh K, Ahamed MB, Polu AR, Sadasivuni KK, Pasha SKK, Ponnamma D, AlMaadeed MAA, Deshmukh RR, Chidambaram K (2016d) Impedance spectroscopy, ionic conductivity and dielectric studies of new Li+ ion conducting polymer blend electrolytes based on biodegradable polymers for solid state battery applications. J Mater Sci: Mater Electron 27:11410–11424

    Google Scholar 

  • Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Bhagat PR, Chidambaram K (2017a) Biopolymer composites with high dielectric performance: interface engineering. Biopolymer composites in electronics, vol 1. Elsevier Publications, Amsterdam, pp 27–128

    Chapter  Google Scholar 

  • Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Sadasivuni KK, Ponnamma D, AlMaadeed MAA (2017b) Striking multiple synergies in novel three-phase fluoropolymer nanocomposites by combining titanium dioxide and graphene oxide as hybrid fillers. J Mater Sci Mater Electron 28:559–575

    Article  Google Scholar 

  • Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Trimukhe AM, Pasha SKK, Polu AR, AlMaadeed MAA, Chidambaram K (2017c) Solution processed white graphene reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation. J Polym Res 24:27

    Article  Google Scholar 

  • Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, AlMaadeed MAA, Pasha SKK, Deshmukh RR, Chidambaram K (2017d) Graphene oxide reinforced poly (4-styrenesulfonic acid)/polyvinyl alcohol blend composites with enhanced dielectric properties for portable and flexible electronics. Mater Chem Phys 186:188–201

    Article  Google Scholar 

  • Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Sadasivuni KK, Polu AR, Ponnamma D, AlMaadeed MAA, Chidambaram K (2017e) Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications. J Mater Sci: Mater Electron 28:973–986

    Google Scholar 

  • Deshmukh K, Sankaran S, Ahamed MB, Sadasivuni KK, Pasha SKK, Ponnamma D, Sreekanth PSR, Chidambaram K (2017f) Dielectric spectroscopy. Instrumental techniques to the characterizations of nanomaterials. Elsevier Publications, Amsterdam, pp 237–299

    Google Scholar 

  • Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, AlMaadeed MAA, Deshmukh RR, Pasha SKK, Polu AR, Chidambaram K (2017g) Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J Appl Polym Sci 134(5):44427

    Article  Google Scholar 

  • Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011, Article ID290602, 19 pages

    Google Scholar 

  • Elahi F, Lu W, Guoping G, Khan F (2013) Core-shell fibers for biomedical applications—a review. J Bioeng Biomed Sci 3(1):1–14

    Article  Google Scholar 

  • Fang J, Wang X, Lin T (2012) Functional applications of electrospun nanofibers. In: Nanofibers-production, properties and functional applications. InTech, pp 287–326

    Google Scholar 

  • Focarete ML, Gualandi C (2013) Potentialities of electrospun polymeric nanofibers in the biomedical field. J Tissue Sci Eng 4(1):1–3

    Google Scholar 

  • Fong H, Reneker DH (1999) Elastomeric nanofibers of Styrene-butadiene-styrene triblock copolymer. J Polym Sci, Part B: Polym Phys 37(24):3488–3493

    Article  Google Scholar 

  • Gao Y, Bach TY, Zhu Y, Kyratzis IL (2014) Electrospun antibacterial nanofibers: production, activity and in vivo applications. J Appl Polym Sci 131(18):40797–40810

    Article  Google Scholar 

  • Gupta B, Agarwal R, Alam MS (2010) Textile based smart wound dressings. Indian J Fibre Text Res 35(2):174–187

    Google Scholar 

  • Gupta KC, Haider A, Choi Y, Kang IK (2014) Nanofibrous scaffolds in biomedical applications. Biomater Res 18(2):27–38

    Google Scholar 

  • Haider A, Haider S, Kang IK (2015) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. 11(8):1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015

    Article  Google Scholar 

  • Hasan MM, Alam AKMM, Nayem KA (2014) Application of electrospinning techniques for the production of tissue engineering scaffolds: a review. Eur Sci J 10(15):1857–7431

    Google Scholar 

  • Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  Google Scholar 

  • Illa MP, Khandelwal M, Sharma CS (2018) Bacterial cellulose – derived carbon nanofibers as anode for lithium – ion batteries. Emergent Mater 1(3–4):1–6

    Google Scholar 

  • Kanani AG, Bahrami SH (2010) Review on electrospun nanofibers scaffold and biomedical applications. Trends Biomater Artif Organs 24(2):93–115

    Google Scholar 

  • Khadka DB, Haynie DT (2012) Protein—and peptide—based electrospun nanofibers in medical biomaterials. Nanomedicine 8(8):1242–1262

    Article  Google Scholar 

  • Khan N, Misra M, Koch T, Mohanty A (2012) Applications of electrospun nanofibers in the biomedical field. Stud Undergraduate Researchers Guelph 5(2):63–73

    Google Scholar 

  • Kim SE, Heo DN, Lee JB, Kim JR, Park SH, Jeon SH, Kwon IK (2009) Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed Mater 4(4):044106

    Article  Google Scholar 

  • Kishan AP, Cosgriff-Hernandez EM (2017) Recent advancements in electrospinning design for tissue engineering applications: a review. J Biomed Mater Res, Part A 105(10):2892–2905

    Article  Google Scholar 

  • Kumar NS, Santhosh C, Sudakaran SV, Deb A, Raghavan V, Venugopal V, Bhatnagar A, Bhat S, Andrews NG (2018) Electrospun polyurethane and soy protein nanofibres for wound dressing applications. IET Nanobiotechnol 12(2):94–98

    Article  Google Scholar 

  • Lee HJ, Lee SJ, Uthaman S, Thomas RG, Hyun H, Jeong YY, Cho CS, Park IK (2015) Biomedical applications of magnetically functionalized organic/inorganic hybrid nanofibers. Int J Mol Sci 16(6):13661–13677

    Article  Google Scholar 

  • Li Z, Wang C (2013) Effects of working parameters on electrospinning. In: One-dimensional nanostructures: electrospinning technique and unique nanofibers. Springer Ltd., IX: 141–145. ISBN: 978-3-642-36426

    Google Scholar 

  • Liu W, Thompoulos S, Xia Y (2012) Electrospun nanofibers for regenerative medicine. Adv Healthc Mater 1(1):10–25

    Article  Google Scholar 

  • Ma Z, Kotaki M, Ramakrishna S (2006) Surface modified non – woven Polysulphone (PSU) fiber mesh by electrospinning: a novel affinity membrane. J Membr Sci 272(1–2):179–187

    Article  Google Scholar 

  • Mohanapriya MK, Deshmukh K, Ahamed MB, Chidambaram K, Pasha SKK (2015) Structural, morphological and dielectric properties of multiphase nanocomposites consisting of polycarbonate, barium titanate and carbon black nanoparticles. Int J Chem Tech Res 8:32–41

    Google Scholar 

  • Mohanapriya MK, Deshmukh K, Ahamed MB, Chidambaram K, Pasha SKK (2016a) Influence of cerium oxide (CeO2) nanoparticles on the structural, morphological, mechanical and dielectric properties of PVA/PPy blend nanocomposites. Mater Today: Proc 3:1864–1873

    Google Scholar 

  • Mohanapriya MK, Deshmukh K, Ahamed MB, Chidambaram K, Pasha SKK (2016b) Zeolite 4A filled poly (3, 4-ethylenedioxythiophene): (polystyrenesulfonate) and polyvinyl alcohol blend nanocomposites as high-k dielectric materials for embedded capacitor applications. Adv Mater Lett 7:996–1002

    Article  Google Scholar 

  • Mohanapriya MK, Deshmukh K, Chidambaram K, Ahamed MB, Sadasivuni KK, Ponnamma D, AlMaadeed MAA, Deshmukh RR, Pasha SKK (2017) Polyvinyl alcohol (PVA)/Polystyrene sulfonic acid (PSSA)/carbon black nanocomposites for flexible energy storage device applications. J Mater Sci: Mater Electron 28:6099–6111

    Google Scholar 

  • Muzaffar A, Ahamed MB, Deshmukh K, Faisal M, Pasha SKK (2018) Enhanced electromagnetic absorption in NiO and BaTiO3 based polyvinylidene fluoride nanocomposites. Mater Lett 218:217–220

    Article  Google Scholar 

  • Pasha SKK, Deshmukh K, Ahamed MB, Chidambaram K, Mohanapriya MK, Nambiraj NA (2015) Investigation of microstructure, morphology, mechanical and dielectric properties of PVA/PbO nanocomposites. Adv Polym Techonol 36:352–361

    Article  Google Scholar 

  • Pattanashetti NA, Heggannavar GB, Kariduraganavar MY (2017) Smart biopolymers and their biomedical applications. Procedia Manuf 12:263–279

    Article  Google Scholar 

  • Pawde SM, Deshmukh K (2008a) Characterization of polyvinyl alcohol/gelatin blend hydro gel films for biomedical applications. J Appl Polym Sci 109:3431–3437

    Article  Google Scholar 

  • Pawde SM, Deshmukh K (2008b) Influence of γ irradiation on the properties of polyacrylonitrile films. J Appl Polym Sci 110:2569–2578

    Article  Google Scholar 

  • Pawde SM, Deshmukh K (2009) Investigation of the structural, thermal, mechanical and optical properties of polymethyl methacrylate (PMMA) and polyvinylidene fluoride (PVDF) blends. J Appl Polym Sci 114:2169–2179

    Article  Google Scholar 

  • Pawde SM, Deshmukh K, Parab S (2008) Preparation and characterization of polyvinyl alcohol and gelatin blend films. J Appl Polym Sci 109:1328–1337

    Article  Google Scholar 

  • Pertici G (2017) Introduction to bioresorbable polymers for biomedical applications. In: Bioresorbable polymers for biomedical applications, pp 3–29

    Google Scholar 

  • Pillai CKS, Sharma CP (2009) Electrospinning of chitin and chitosan nanofibres. Trends Biomater Artif Organs 22(3):179–201

    Google Scholar 

  • Ponnamma D, Chamakh MM, Deshmukh K, Ahamed MB, Alper E, Sharma P, AlMaadeed MAA (2017) Ceramic based polymer nanocomposites as piezoelectric materials. Smart polymer nanocomposites, vol 1. Springer Publications AG, Switzerland, pp 77–93

    Chapter  Google Scholar 

  • Ponnamma D, Erturk A, Parangusan H, Deshmukh K, Ahamed MB, Al – Maadeed MA (2018) Strechable quaternary phasic PVDF – HFP nanocomposite films containing graphene – titania – SrTiO3 for mechanical energy harvesting. Emergent Materi 1(1–2):55–65

    Google Scholar 

  • Powell HM, Supp DM, Boyce ST (2008) Influence of electrospun collagen on wound contraction of engineered skin substitutes. Biomaterials 29(7):834–843

    Article  Google Scholar 

  • Preethi GU, Joseph MM, Unnikrishnan BS, Shiji R, Sreelekha TT (2015) Biomedical applications of natural polymer based nanofibrous scaffolds. Int J Med Nano Res 2(2):1–9

    Google Scholar 

  • Pulapura S, Kohn J (1992) Trends in the development of bioresorbable polymers for medical applications. J Biomater Appl 6(3):216–250

    Article  Google Scholar 

  • Qu H, Wei S, Guo Z (2013) Coaxial electrospun nanostructures and their applications. J Mater Chem A 1(38):11513–11528

    Article  Google Scholar 

  • Rath G, Hussain T, Chauhan G, Garg T, Goyal AK (2016) Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J Drug Target 24(6):520–529

    Article  Google Scholar 

  • Rosic R, Pelipenko J, Kristl J, Kocbek P, Baumgartner S (2012) Properties, engineering and applications of polymeric nanofibers: current research and future advances. Chem Biochem Eng Q 26(4):417–425

    Google Scholar 

  • Rosic R, Kocbek P, Pelipenko J, Krist J, Baumgartner S (2013) Nanofibers and their biomedical use. Acta Pharmaceutica 63:295–304

    Article  Google Scholar 

  • Sadeghi-Avalshahr A, Nokhasteh S, Molavi AM, Khorsand-Ghayeni M, Mahdavi-Shahri M (2017) Synthesis and characterization of collagen/PLGA biodegradable skin scaffold fibers. Regenerative Biomater 4(5):309–314

    Article  Google Scholar 

  • Sathapathy KD, Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Pasha SKK, AlMaadeed MAA, Ahmad J (2017) High-quality factor poly (vinylidene fluoride) based novel nanocomposites filled with graphene nanoplatelets and vanadium pentoxide for high-Q capacitor applications. Adv Mater Lett 8:288–294

    Article  Google Scholar 

  • Sharma J, Lizu M, Stewart M, Zygula K, Lu Y, Chauhan R, Yan X, Guo Z, Wujcik EK, Wei S (2015) Multifunctional nanofibers towards active biomedical therapeutics. Polymers 7(2):186–219

    Article  Google Scholar 

  • Shin SH, Purevdorj O, Castano O, Planel JA, Kim HW (2012) A short review: recent advances in electrospinning for bone tissue regeneration. J Tissue Eng 3(1):1–11

    Article  Google Scholar 

  • Sill TJ, Recum HAV (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006

    Article  Google Scholar 

  • Sridhar R, Sundarrajan S, Venugopal JR, Ravichandran R, Ramakrishna S (2013) Electrospun inorganic and polymer composite nanofibers for biomedical applications. J Biomater Sci Polym Ed 24(4):365–385

    Article  Google Scholar 

  • Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310(5751):1135–1138

    Article  Google Scholar 

  • Sundaramurthi D, Krishnan UM, Sethuraman S (2014) Electrospun nanofibers as scaffolds for skin tissue engineering. Polym Rev 54(2):348–376

    Article  Google Scholar 

  • Thangamani GJ, Deshmukh K, Chidambaram K, Ahamed MB, Sadasivuni KK, Ponnamma D, Faisal M, Nambiraj NA, Pasha SKK (2018) Influence of CuO nanoparticles and graphene nanoplatelets on the sensing behavior of poly (vinylalcohol) nanocomposites for the detection of ethanol and propanol vapors. J Mater Sci: Mater Electron 29:5186–5205

    Google Scholar 

  • Turon P, del Valle LJ, Aleman C, Puiggali J (2017) Biodegradable and biocompatible systems based on hydroxyapatite nanoparticles. Appl Sci 7(1):60

    Article  Google Scholar 

  • Uttayarat P, Jetawattana S, Suwanmala P, Eamsiri J, Tangthong T, Pongpat S (2012) Antimicrobial electrospun silk fibroin mats with silver nanoparticles for wound dressing application. Fibers Polym 13(8):999–1006

    Article  Google Scholar 

  • Venugopal J, Ramakrishna S (2005) Applications of polymer nanofibers in biomedicine and biotechnology. Appl Biochem Biotechnol 125(3):147–157

    Article  Google Scholar 

  • Wang X, Ding X, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16(6):229–241

    Article  Google Scholar 

  • Winter GD (1962) Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 193:293–294

    Article  Google Scholar 

  • Winter GD (1965) A note on wound healing under dressings with reference to perforated—film dressings. J Invest Dermatol 45(4):299–302

    Article  Google Scholar 

  • Yu DG, Zhu LM, White K, White CB (2009) Electrospun nanofiber-based drug delivery systems. Health 1(2):67–75

    Article  Google Scholar 

  • Yuan TT, Jenkins PM, Foushee AMD, Jockheck-Clark AR, Stahl JM (2016) Electrospun chitosan/polyethylene oxide nanofibrous scaffolds with potential antibacterial wound dressing applications. J Nanomat 2016, Article ID 6231040, 10 Pages

    Google Scholar 

  • Zafar M, Najeeb S, Khurshid Z, Vazirzadeh M, Zohaib S, Najeeb B, Sefat F (2016) Potential of electrospun nanofibers for biomedical and dental applications. Materials 9(73):1–21

    Google Scholar 

  • Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2003) Biodegradable electrospun fibers for drug delivery. J Controlled Release 92(3):227–231

    Article  Google Scholar 

  • Zhang Y, Lim CT, Ramakrishna S, Huang ZM (2005) Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci—Mater Med 16(10):933–946

    Article  Google Scholar 

  • Zhang W, Ronca S, Mele E (2017) Electrospun nanofibres containing antimicrobial plant extracts. Nanomaterials 7(2):42

    Article  Google Scholar 

  • Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16):4403–4412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Basheer Ahamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sankaran, S., Deshmukh, K., Basheer Ahamed, M., Khadheer Pasha, S.K. (2019). Electrospun Polymeric Nanofibers: Fundamental Aspects of Electrospinning Processes, Optimization of Electrospinning Parameters, Properties, and Applications. In: Sadasivuni, K., Ponnamma, D., Rajan, M., Ahmed, B., Al-Maadeed, M. (eds) Polymer Nanocomposites in Biomedical Engineering . Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-04741-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04741-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04740-5

  • Online ISBN: 978-3-030-04741-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics