Skip to main content

Extreme Statistics in Memories

  • Chapter
  • First Online:
  • 2720 Accesses

Abstract

Memory design specifications typically include yield requirements, apart from performance and power requirements. These yield requirements are usually specified for the entire memory array at some supply voltage and temperature conditions. For example, the designer may be comfortable with an array failure probability of one in a thousand at 100C and 1 V supply, i.e., F f,array ≤ 10−3. However, how does this translate to a yield requirement for the memory cell? How do we even estimate the statistical distribution of memory cell performance metrics in this extreme rare event regime? We will answer these questions and in the process see the application of certain machine learning techniques and extreme value theory in memory design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    To put this in perspective, note that achieving 99% yield for even 1000 bitcells requires marginal yield of 99.999% on each cell. For a parameter with an unskewed Gaussian distribution, this equates to over 4.2 standard deviations beyond the mean, far above the 2.3 assumed by a 99th percentile value. With mega-bits of memory, it is clear that assuming thresholds far into the tail is reasonable.

  2. 2.

    Here we extract this vector using the SiLVR tool described in [19, 21], so that \(w_{1,DRV_0}\) is essentially the projection vector of the first latent variable of DRV 0.

References

  1. A.A. Balkema, L. de Haan, Residual life time at great age. Ann. Probab. 2(5), 792–804 (1974)

    Article  MathSciNet  Google Scholar 

  2. A.C. Davison, R.L. Smith, Models for exceedances over high thresholds (with discussion). J. R. Stat. Soc. Ser. B Methodol. 52, 393–442 (1990)

    MATH  Google Scholar 

  3. P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling Extremal Events for Insurance and Finance, 4th edn. (Springer, Berlin, 2003)

    MATH  Google Scholar 

  4. R.A. Fisher, L.H.C. Tippett, Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philol. Soc. 24, 180–190 (1928)

    Article  Google Scholar 

  5. B. Gnedenko, Sur la distribution limite du terme maximum d’une aleatoire. Ann. Math. 44(3), 423–453 (1943)

    Article  MathSciNet  Google Scholar 

  6. S.D. Grimshaw, Computing maximum likelihood estimates for the generalized Pareto distribution. Technometrics 35(2), 185–191 (1993)

    Article  MathSciNet  Google Scholar 

  7. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, New York, 2001)

    Book  Google Scholar 

  8. J.R.M. Hosking, J.R. Wallis, Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29(3), 339–349 (1987)

    Article  MathSciNet  Google Scholar 

  9. J.R.M. Hosking, The theory of probability weighted moments, IBM Research Report, RC12210, 1986

    Google Scholar 

  10. T. Joachims, Making large-scale SVM learning practical, in Advances in Kernel Methods - Support Vector Learning, ed. by B. Schölkopf, C. Burges, A. Smola (MIT Press, Cambridge, 1999)

    Google Scholar 

  11. B. Joshi, R.K. Anand, C. Berg, J. Cruz-Rios, A. Krishnamurthi, N. Nettleton, S. Ngu-yen, J. Reaves, J. Reed, A. Rogers, S. Rusu, C. Tucker, C. Wang, M. Wong, D. Yee, J.-H. Chang, A BiCMOS 50MHz cache controller for a superscalar microprocessor, in International Solid-State Circuits Conference (1992)

    Google Scholar 

  12. R.K. Krishnamurthy, A. Alvandpour, V. De, S. Borkar, High-performance and low-power challenges for sub-70nm microprocessor circuits, in Proceedings of Custom Integrated Circuits Conference (2002)

    Google Scholar 

  13. W. Liu, X. Jin, J. Chen, M.-C. Jeng, Z. Liu, Y. Cheng, K. Chen, M. Chan, K. Hui, J. Huang, R. Tu, P. Ko, C. Hu, BSIM 3v3.2 Mosfet Model Users’ Manual, Tech. Report No. UCB/ERL M98/51, University of California, Berkeley, 1988

    Google Scholar 

  14. K. Morik, P. Brockhausen, T. Joachims, Combining statistical learning with a knowledge-based approach - a case study in intensive care monitoring, in Proceedings of 16th International Conference on Machine Learning (1999)

    Google Scholar 

  15. J. Pickands III, Statistical inference using extreme order statistics. Ann. Stat. 3(1), 119–131 (1975)

    Article  MathSciNet  Google Scholar 

  16. W.H. Press, B.P. Flannery, A.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. (Cambridge University Press, Cambridge, 1992)

    MATH  Google Scholar 

  17. S.I. Resnick, Extreme Values, Regular Variation and Point Processes (Springer, New York, 1987)

    Book  Google Scholar 

  18. A. Singhee, Novel algorithms for fast statistical analysis of scaled circuits. PhD Thesis, Electrical and Computer Engineering, Carnegie Mellon University (2007)

    Google Scholar 

  19. A. Singhee, SiLVR: projection pursuit for response surface modeling, in Machine Learning in VLSI Computer Aided Design, ed. by I.M. Elfadel, D. Boning, X. Li (Springer, Berlin, 2018)

    Google Scholar 

  20. A. Singhee, R.A. Rutenbar, Statistical Blockade: a novel method for very fast Monte Carlo simulation of rare circuit events, and its application, in Proceedings of Design Automation & Test in Europe (2007)

    Google Scholar 

  21. A. Singhee, R.A. Rutenbar, Beyond low-order statistical response surfaces: latent variable regression for efficient, highly nonlinear fitting, in Proceedings of IEEE/ACM Design Automation Conference (2007)

    Google Scholar 

  22. A. Singhee, R. Rutenbar, Extreme Statistics in Nanoscale Memory Design (Springer, New York, 2010)

    Book  Google Scholar 

  23. A. Singhee, J. Wang, B.H. Calhoun, R.A. Rutenbar, Recursive Statistical Blockade: an enhanced technique for rare event simulation with application to SRAM circuit design, in Proceeding of International Conference on VLSI Design (2008)

    Google Scholar 

  24. R.L. Smith, Estimating tails of probability distributions. Ann. Stat. 15(3), 1174–1207 (1987)

    Article  MathSciNet  Google Scholar 

  25. R.L. Smith, Maximum likelihood estimation in a class of non-regular cases. Biometrika 72, 67–92 (1985)

    Article  MathSciNet  Google Scholar 

  26. J. Wang, A. Singhee, R.A. Rutenbar, B.H. Calhoun, Modeling the minimum standby supply voltage of a full SRAM array, in Proceedings of European Solid-State Circuits Conference (2007)

    Google Scholar 

  27. J. Wang, A. Singhee, R.A. Rutenbar, B.H. Calhoun, Two fast methods for estimating the minimum standby supply voltage for large SRAMs. IEEE Trans. Comput. Aided Des. 29(12), 1908–1920 (2010)

    Article  Google Scholar 

  28. K. Zhang, Embedded Memories for Nanoscale VLSIs (Springer, New York, 2009)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the MARCO/DARPA Focus Research Center for Circuit and System Solutions (C2S2) and the Semiconductor Research Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amith Singhee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singhee, A. (2019). Extreme Statistics in Memories. In: Elfadel, I., Boning, D., Li, X. (eds) Machine Learning in VLSI Computer-Aided Design. Springer, Cham. https://doi.org/10.1007/978-3-030-04666-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04666-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04665-1

  • Online ISBN: 978-3-030-04666-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics