Skip to main content

Relaxation and Matrix Randomized Rounding for the Maximum Spectral Subgraph Problem

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11346))

  • 717 Accesses

Abstract

Modifying the topology of a network to mitigate the spread of an epidemic with epidemiological constant \(\lambda \) amounts to the NP-hard problem of finding a partial subgraph with maximum number of edges and spectral radius bounded above by \(\lambda \). A software-defined network (SDN) capable of real-time topology reconfiguration can then use an algorithm for finding such subgraph to quickly remove spreading malware threats without deploying specific security countermeasures.

In this paper, we propose a novel randomized approximation algorithm based on the relaxation and rounding framework that achieves a \(O(\log n)\) approximation in the case of finding a subgraph with spectral radius bounded by \(\lambda \in (\log n, \lambda _1(G))\) where \(\lambda _1(G)\) is the spectral radius of the input graph and n its number of nodes. We combine this algorithm with a maximum matching algorithm to obtain a \(O(\log ^2 n)\) approximation algorithm for all values of \(\lambda \). We also describe how the mathematical programming formulation we give has several advantages over previous approaches which attempted at finding a subgraph with minimum spectral radius given an edge removal budget.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhatia, R.: Matrix Analysis, vol. 169. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4612-0653-8

    Book  MATH  Google Scholar 

  2. Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. (TISSEC) 10(4), 1 (2008)

    Article  Google Scholar 

  3. Chung, F., Radcliffe, M.: On the spectra of general random graphs. Electron. J. Comb. 18(1), 215 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Ganesh, A., Massoulié, L., Towsley, D.: The effect of network topology on the spread of epidemics. In: Proceedings of the Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2005), vol. 2, pp. 1455–1466 (2005)

    Google Scholar 

  5. Ghosh, A., Boyd, S.: Growing well-connected graphs. In: Proceedings of the IEEE Conference on Decision and Control (CDC 2006), pp. 6605–6611. IEEE (2006)

    Google Scholar 

  6. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM (JACM) 42(6), 1115–1145 (1995)

    Article  MathSciNet  Google Scholar 

  7. Kolla, A., Makarychev, Y., Saberi, A., Teng, S-H.: Subgraph sparsification and nearly optimal ultrasparsifiers. In: Proceedings of the ACM Symposium on Theory of Computing (STOC 2010), pp. 57–66. ACM (2010)

    Google Scholar 

  8. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  9. Le, C.M., Levina, E., Vershynin, R.: Concentration and regularization of random graphs. Random Struct. Algorithms 51(3), 538–561 (2017)

    Article  MathSciNet  Google Scholar 

  10. Mehdi, S.A., Khalid, J., Khayam, S.A.: Revisiting traffic anomaly detection using software defined networking. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp. 161–180. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23644-0_9

    Chapter  Google Scholar 

  11. Mosk-Aoyama, D.: Maximum algebraic connectivity augmentation is NP-hard. Oper. Res. Lett. 36(6), 677–679 (2008)

    Article  MathSciNet  Google Scholar 

  12. Motwani, R., Raghavan, P.: Randomized Algorithms. Chapman & Hall/CRC, Boca Raton (2010)

    MATH  Google Scholar 

  13. Nie, J.: Polynomial matrix inequality and semidefinite representation. Math. Oper. Res. 36(3), 398–415 (2011)

    Article  MathSciNet  Google Scholar 

  14. Pan, V.Y., Chen, Z.Q.: The complexity of the matrix eigenproblem. In: Proceedings of the ACM Symposium on Theory of Computing (STOC 1999), pp. 507–516 (1999)

    Google Scholar 

  15. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2), 293–320 (2003)

    Article  MathSciNet  Google Scholar 

  16. Aditya Prakash, B., Chakrabarti, D., Faloutsos, M., Valler, N., Faloutsos, C.: Threshold conditions for arbitrary cascade models on arbitrary networks. In: Proceedings of the IEEE International Conference on Data Mining (ICDM 2011), pp. 537–546 (2011)

    Google Scholar 

  17. Raghavan, P., Tompson, C.D.: Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987)

    Article  MathSciNet  Google Scholar 

  18. Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP? In: Proceedings of the ACM Symposium on Theory of Computing (STOC 2008), pp. 245–254. ACM (2008)

    Google Scholar 

  19. Saha, S., Adiga, A., Aditya Prakash, B., Vullikanti, A.K.S.: Approximation algorithms for reducing the spectral radius to control epidemic spread. In: Proceedings of the SIAM International Conference on Data Mining (SDM 2015), pp. 568–576 (2015)

    Chapter  Google Scholar 

  20. Shin, S., Gu, G.: CloudWatcher: network security monitoring using OpenFlow in dynamic cloud networks (or: how to provide security monitoring as a service in clouds?). In: Proceedings of the IEEE International Conference on Network Protocols (ICNP 2012), pp. 1–6. IEEE (2012)

    Google Scholar 

  21. Stevanović, D.: Resolution of AutoGraphiX conjectures relating the index and matching number of graphs. Linear Algebra Appl. 8(433), 1674–1677 (2010)

    Article  MathSciNet  Google Scholar 

  22. Tropp, J.A., et al.: An introduction to matrix concentration inequalities. Found. Trends® Mach. Learn. 8(1–2), 1–230 (2015)

    MATH  Google Scholar 

  23. van Handel, R.: Structured random matrices. In: Carlen, E., Madiman, M., Werner, E.M. (eds.) Convexity and Concentration. TIVMA, vol. 161, pp. 107–156. Springer, New York (2017). https://doi.org/10.1007/978-1-4939-7005-6_4

    Chapter  Google Scholar 

  24. Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  25. Van Mieghem, P., Omic, J., Kooij, R.: Virus spread in networks. IEEE/ACM Trans. Netw. (TON) 17(1), 1–14 (2009)

    Article  Google Scholar 

  26. Van Mieghem, P., et al.: Decreasing the spectral radius of a graph by link removals. Phys. Rev. E 84(1), 016101 (2011)

    Article  Google Scholar 

  27. Wang, G., Ng, T.S., Shaikh, A.: Programming your network at run-time for big data applications. In: Proceedings of the Workshop on Hot Topics in Software Defined Networks (HotSDN 2012), pp. 103–108. ACM (2012)

    Google Scholar 

  28. Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: Epidemic spreading in real networks: an eigenvalue viewpoint. In: Proceedings of the International Symposium on Reliable Distributed Systems (SRDS 2003), pp. 25–34. IEEE (2003)

    Google Scholar 

  29. Zhang, Y., Adiga, A., Vullikanti, A., Aditya Prakash, B.: Controlling propagation at group scale on networks. In: Proceedings of the International Conference on Data Mining (ICDM 2015), pp. 619–628 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Beaujean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bazgan, C., Beaujean, P., Gourdin, É. (2018). Relaxation and Matrix Randomized Rounding for the Maximum Spectral Subgraph Problem. In: Kim, D., Uma, R., Zelikovsky, A. (eds) Combinatorial Optimization and Applications. COCOA 2018. Lecture Notes in Computer Science(), vol 11346. Springer, Cham. https://doi.org/10.1007/978-3-030-04651-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04651-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04650-7

  • Online ISBN: 978-3-030-04651-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics