Skip to main content

Primal Dual Algorithm for Partial Set Multi-cover

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11346))

Abstract

In a minimum partial set multi-cover problem (MinPSMC), given an element set E, a collection of subsets \(\mathcal S \subseteq 2^E\), a cost \(w_S\) on each set \(S\in \mathcal S\), a covering requirement \(r_e\) for each element \(e\in E\), and an integer k, the goal is to find a sub-collection \(\mathcal F \subseteq \mathcal S\) to fully cover at least k elements such that the cost of \(\mathcal F\) is as small as possible, where element e is fully covered by \(\mathcal F\) if it belongs to at least \(r_e\) sets of \(\mathcal F\). On the application side, the problem has its background in the seed selection problem in a social network. On the theoretical side, it is a natural combination of the minimum partial (single) set cover problem (MinPSC) and the minimum set multi-cover problem (MinSMC). Although both MinPSC and MinSMC admit good approximations whose performance ratios match those lower bounds for the classic set cover problem, previous studies show that theoretical study on MinPSMC is quite challenging. In this paper, we prove that MinPSMC cannot be approximated within factor \(O(n^\frac{1}{2(\log \log n)^c})\) under the ETH assumption. A primal dual algorithm for MinPSMC is presented with a guaranteed performance ratio \(O(\sqrt{n})\) when \(r_{\max }\) and f are constants, where \(r_{\max } =\max _{e\in E} r_e\) is the maximum covering requirement and f is the maximum frequency of elements (that is the maximum number of sets containing a common element). We also improve the ratio for a restricted version of MinPSMC which possesses a graph-type structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

    Google Scholar 

  2. Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_91

    Chapter  Google Scholar 

  3. Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete Math. 23(3), 1400–1415 (2008). A preliminary version appears in SODA’08, pp. 1029–1037

    Google Scholar 

  4. Ran, Y., Zhang, Z., Du, H., Zhu, Y.: Approximation algorithm for partial positive influence problem in social network. J. Comb. Optim. 33(2), 791–802 (2017)

    Article  MathSciNet  Google Scholar 

  5. Ran, Y., Shi, Y., Zhang, Z.: Local ratio method on partial set multi-cover. J. Comb. Optim. 34, 302–313 (2017)

    Article  MathSciNet  Google Scholar 

  6. Dinh, T.N., Shen, Y., Nguyen, D.T., Thai, M.T.: On the approximability of positive influence dominating set in social networks. J. Comb. Optim. 27, 487–503 (2014)

    Article  MathSciNet  Google Scholar 

  7. Wang, F., Camacho, E., Xu, K.: Positive influence dominating set in online social networks. In: Du, D.-Z., Hu, X., Pardalos, P.M. (eds.) COCOA 2009. LNCS, vol. 5573, pp. 313–321. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02026-1_29

    Chapter  Google Scholar 

  8. Wang, F., et al.: On positive influence dominating sets in social networks. Theoret. Comput. Sci. 412, 265–269 (2011)

    Article  MathSciNet  Google Scholar 

  9. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  10. Feige, U.: A threshold of \(\ln n\) for approximating set cover. In: Proceedings of 28th ACM Symposium on the Theory of Computing, pp. 312–318 (1996)

    Google Scholar 

  11. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: STOC, pp. 624–633 (2014)

    Google Scholar 

  12. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput 9, 256–278 (1974)

    MathSciNet  MATH  Google Scholar 

  13. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13, 383–390 (1975)

    Article  MathSciNet  Google Scholar 

  14. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 233–235 (1979)

    Article  MathSciNet  Google Scholar 

  15. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

    Google Scholar 

  16. Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover problems. SIAM J. Comput. 11, 555–556 (1982)

    Article  MathSciNet  Google Scholar 

  17. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover problem. North-Holland Math. Stud. 109, 27–45 (1985)

    Google Scholar 

  18. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within \(2-\varepsilon \). J. Comput. Syst. Sci. 74(3), 335–349 (2008)

    Google Scholar 

  19. Rajagopalan, S., Vazirani, V.V.: Primal-dual RNC approximation algorithms for (multi)-set (multi)-cover and covering integer programs. In: Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science, pp. 322–331 (1993)

    Google Scholar 

  20. Kearns, M.: The Computational Complexity of Machine Learning. MIT Press, Cambridge (1990)

    Google Scholar 

  21. Slavík, P.: Improved performance of the greedy algorithm for partial cover. Inf. Process. Lett. 64(5), 251–254 (1997)

    Article  MathSciNet  Google Scholar 

  22. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. J. Algorithms 53(1), 55–84 (2004)

    Article  MathSciNet  Google Scholar 

  23. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover problem. J. Algorithms 39, 137–144 (2001)

    Article  MathSciNet  Google Scholar 

  24. Manurangsi, P.: Almost-polynomial ratio ETH-hardness of approximating densest \(k\)-subgraph. In: STOC, pp. 19–23 (2017)

    Google Scholar 

  25. Lovász, L.: Submodular functions and convexity. In: Bachem, A., Korte, B., Grötschel, M. (eds.) Mathematical Programming the State of the Art, pp. 235–257. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-68874-4_10

    Chapter  Google Scholar 

  26. Fleisher, L., Iwata, S.: A push-relabel framework for submodular function minimization and applications to parametric optimization. Discrete Appl. Math. 131, 311–322 (2003)

    Google Scholar 

  27. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting high log-densities: an \(O(n^{1/4})\) approximation for densest \(k\)-subgraph. In: STOC, pp. 201–210 (2010)

    Google Scholar 

  28. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Guy, R., Hanani, H., Sauer, N., Schönheim, J. (eds.) Combinatorial Structures and Their Applications, pp. 69–87. Gordon and Breach, New York (1970)

    Google Scholar 

Download references

Acknowledgements

This research is supported by NSFC (11771013, 11531011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ran, Y., Shi, Y., Zhang, Z. (2018). Primal Dual Algorithm for Partial Set Multi-cover. In: Kim, D., Uma, R., Zelikovsky, A. (eds) Combinatorial Optimization and Applications. COCOA 2018. Lecture Notes in Computer Science(), vol 11346. Springer, Cham. https://doi.org/10.1007/978-3-030-04651-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04651-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04650-7

  • Online ISBN: 978-3-030-04651-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics