Skip to main content

Editing Graphs to Satisfy Diversity Requirements

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11346))

Abstract

Let G be a graph where every vertex has a colour and has specified diversity constraints, that is, a minimum number of neighbours of every colour. Every vertex also has a max-degree constraint: an upper bound on the total number of neighbours. In the Min-Edit-Cost problem, we wish to transform G using edge additions and/or deletions into a graph \(G'\) where every vertex satisfies all diversity as well as max-degree constraints. We show an \(O(n^5 \log n)\) algorithm for the Min-Edit-Cost problem, and an \(O(n^3 \log n \log \log n)\) algorithm for the bipartite case. Given a specified number of edge operations, the Max-Satisfied-Nodes problem is to find the maximum number of vertices whose diversity constraints can be satisfied while ensuring that all max-degree constraints are satisfied. We show that the Max-Satisfied-Nodes problem is W[1]-hard, in parameter \(r+ \ell \), where r is the number of edge operations and \(\ell \) is the number of vertices to be satisfied. We also show that it is inapproximable to within a factor of \(n^{1/2-\epsilon }\). For certain relaxations of the max-degree constraints, we are able to show constant-factor approximation algorithms for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahuja, R.K., Goldberg, A.V., Orlin, J.B., Tarjan, R.E.: Finding minimum-cost flows by double scaling. Math. Program. 53(1–3), 243–266 (1992)

    Article  MathSciNet  Google Scholar 

  2. Bredereck, R., Hartung, S., Nichterlein, A., Woeginger, G.J.: The complexity of finding a large subgraph under anonymity constraints. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 152–162. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45030-3_15

    Chapter  Google Scholar 

  3. Cheah, F., Corneil, D.G.: The complexity of regular subgraph recognition. Discrete Appl. Math. 27(1–2), 59–68 (1990)

    Article  MathSciNet  Google Scholar 

  4. Chvátal, V., Fleischner, H., Sheehan, J., Thomassen, C.: Three-regular subgraphs of four-regular graphs. J. Graph Theory 3(4), 371–386 (1979)

    Article  MathSciNet  Google Scholar 

  5. Cornuéjols, G.: General factors of graphs. J. Comb. Theory Ser. B 45(2), 185–198 (1988)

    Article  MathSciNet  Google Scholar 

  6. Dondi, R., Lafond, M., El-Mabrouk, N.: Approximating the correction of weighted and unweighted orthology and paralogy relations. Algorithms Mol. Biol. 12(1), 4 (2017)

    Article  Google Scholar 

  7. Duan, R., Pettie, S., Su, H.-H.: Scaling algorithms for weighted matching in general graphs. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 781–800. Society for Industrial and Applied Mathematics (2017)

    Google Scholar 

  8. Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H.: A fast matching algorithm for graph-based handwriting recognition. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 194–203. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38221-5_21

    Chapter  MATH  Google Scholar 

  9. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13(1), 113–129 (2010)

    Article  MathSciNet  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W. H. freeman, New York (2002)

    Google Scholar 

  11. Golovach, P.A.: Editing to a connected graph of given degrees. Inf. Comput. 256, 131–147 (2017)

    Article  MathSciNet  Google Scholar 

  12. Golovach, P.A., Mertzios, G.B.: Graph editing to a given degree sequence. Theoret. Comput. Sci. 665, 1–12 (2017)

    Article  MathSciNet  Google Scholar 

  13. Hartung, S., Nichterlein, A., Niedermeier, R., Suchỳ, O.: A refined complexity analysis of degree anonymization in graphs. Inf. Comput. 243, 249–262 (2015)

    Article  MathSciNet  Google Scholar 

  14. Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 21, i213–i221 (2005)

    Article  Google Scholar 

  15. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

    Article  MathSciNet  Google Scholar 

  16. Lin, B.: The parameterized complexity of k-Biclique. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 605–615. Society for Industrial and Applied Mathematics (2015)

    Google Scholar 

  17. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 93–106. ACM (2008)

    Google Scholar 

  18. Liu, Y., Wang, J., Guo, J., Chen, J.: Cograph editing: complexity and parameterized algorithms. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 110–121. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22685-4_10

    Chapter  Google Scholar 

  19. Lovász, L.: The factorization of graphs. ii. Acta Mathematica Academiae Scientiarum Hungarica, 23(1–2), 223–246 (1972)

    Article  MathSciNet  Google Scholar 

  20. Mathieson, L., Szeider, S.: Editing graphs to satisfy degree constraints: a parameterized approach. J. Comput. Syst. Sci. 78(1), 179–191 (2012)

    Article  MathSciNet  Google Scholar 

  21. Neuhaus, M., Bunke, H.: A graph matching based approach to fingerprint classification using directional variance. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 191–200. Springer, Heidelberg (2005). https://doi.org/10.1007/11527923_20

    Chapter  Google Scholar 

  22. Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and Kernel Machines, vol. 68. World Scientific, Singapore (2007)

    Google Scholar 

  23. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)

    Article  Google Scholar 

  24. Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for computing the edit distance of graphs. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 1–12. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72903-7_1

    Chapter  MATH  Google Scholar 

  25. Subramanya, V.: Graph editing to a given neighbourhood degree list is fixed-parameter tractable. Master’s thesis, University of Waterloo (2016)

    Google Scholar 

  26. Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309 (1981)

    Article  MathSciNet  Google Scholar 

  27. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. Proc. VLDB Endow. 2(1), 25–36 (2009)

    Article  Google Scholar 

  28. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, pp. 681–690. ACM (2006)

    Google Scholar 

Download references

Acknowledgement

We thank Jaroslav Opatrny for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Lafond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chuangpishit, H., Lafond, M., Narayanan, L. (2018). Editing Graphs to Satisfy Diversity Requirements. In: Kim, D., Uma, R., Zelikovsky, A. (eds) Combinatorial Optimization and Applications. COCOA 2018. Lecture Notes in Computer Science(), vol 11346. Springer, Cham. https://doi.org/10.1007/978-3-030-04651-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04651-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04650-7

  • Online ISBN: 978-3-030-04651-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics