Skip to main content

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Thermal desorption spectroscopy, secondary ion mass spectroscopy and scanning transmission electron microscopy have been used to investigate the effect of pH on corrosion and hydrogen pick-up behaviour in different samples of Zircaloy-4 . Samples were autoclave-oxidised in pure water and at an elevated pH (with 50% deuterated water) when compared to commercial reactors. A characteristic desorption peak for hydrogen has been found at ~650 °C, which occurs when the difference in free energy between hydrogen in the metal and in the gas phase becomes positive. Electron energy loss spectroscopy provided us with a method to detect and measure the thickness of the following layers (from oxide to metal): ZrO2, a previously reported ZrO suboxide, an oxygen saturated zirconium region and the Zr metal. Overall, samples exposed to a high pH show a longer time to transition and contain far less hydrogen than those oxidised in pure water. A mechanistic explanation will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Yeniscavich, R.A. Wolfe, R.M. Lieberman, Hydrogen absorption by nickel enriched zircaloy-2. J. Nucl. Mater. 3, 271–280 (1959)

    Article  Google Scholar 

  2. W.E. Berry, D.A. Vaughan, E.L. White, Hydrogen Pickup during aqueous corrosion of zirconium alloys. Corrosion 17, 109–117 (1961)

    Article  Google Scholar 

  3. A.T. Motta, L.-Q. Chen, Hydride formation in Zirconium Alloys. JOM 64(12), 1403–1408 (2012). doi:https://doi.org/10.1007/s11837-012-0479-x

    Article  CAS  Google Scholar 

  4. A. Couet, A.T. Motta, R.J. Comstock, Hydrogen pickup measurements in zirconium alloys: Relation to oxidation kinetics. J. Nucl. Mater. 451(1–3), 1–13 (2014). doi:https://doi.org/10.1016/j.jnucmat.2014.03.001

    Article  CAS  Google Scholar 

  5. F. Garzarolli, B. Cox, P. Rudling, ANT International Report: Corrosion and Hydriding (2012)

    Google Scholar 

  6. M. Harada, R. Wakamatsu, M. Limback, B. Kammenzind, S.W. Dean, The effect of hydrogen on the transition behavior of the corrosion rate of Zirconium Alloys. Zirconium in the Nuclear Industry: 15th International Symposium ASTM STP 1505. 5(3), 101–117 (2008). doi:https://doi.org/10.1520/JAI101117

    Article  Google Scholar 

  7. W.J. Peterson, R.E. Gilbert, G.B. Hoflund, The interaction of Hydrogen with polycrystalline Zirconium Part II. The effect of preadsorbed oxygen. Appl. Surf. Sci. 24, 121–124 (1985)

    Article  CAS  Google Scholar 

  8. W. Chen, L. Wang, S. Lu, Influence of oxide layer on hydrogen desorption from zirconium hydride. J. Alloys Compd. 469(1–2), 142–145 (2009). doi:https://doi.org/10.1016/j.jallcom.2008.01.157

    Article  CAS  Google Scholar 

  9. N. Eliaz, D. Eliezer, E. Abramov, D. Zander, U. Koster, Hydrogen evolution from Zr-based amorphous and quasicrystalline alloys. J. Alloys Compd. 305, 272–281 (2000)

    Article  CAS  Google Scholar 

  10. J.-H. Huang, S.-P. Huang, Hydriding of zirconium alloys in hydrogen gas. Mater. Sci. Eng., A 161(2), 247–253 (1993). doi:https://doi.org/10.1016/0921-5093(93)90519-K

    Article  Google Scholar 

  11. D. Wongsawaeng, S. Jaiyen, High-temperature absolute hydrogen desorption kinetics of zirconium hydride under clean and oxidized surface conditions. J. Nucl. Mater. 403(1–3), 19–24 (2010). doi:https://doi.org/10.1016/j.jnucmat.2010.05.025

    Article  CAS  Google Scholar 

  12. Y.S. Li, P.C. Wong, K.A.R. Mitchell, XPS investigations of the interactions of hydrogen with thin films of zirconium oxide II. Effects of heating a 26 Å thick film after treatment with a hydrogen plasma. Appl. Surf. Sci. 89(3), 263–269 (1995). doi:https://doi.org/10.1016/0169-4332(95)00032-1

    Article  CAS  Google Scholar 

  13. A. Yilmazbayhan, E. Breval, A.T. Motta, R.J. Comstock, Transmission electron microscopy examination of oxide layers formed on Zr alloys. J. Nucl. Mater. 349(3), 265–281 (2006). doi:https://doi.org/10.1016/j.jnucmat.2005.10.012

    Article  CAS  Google Scholar 

  14. M. Preuss, P. Frankel, S. Lozano-Perez et al., Studies regarding corrosion mechanisms in Zirconium Alloys. Zirconium in the Nuclear Industry: 16th International Symposium ASTM STP 1529. 8(9) (2011). doi:https://doi.org/10.1520/JAI103246

    Article  Google Scholar 

  15. D. Pêcheur, J. Godlewski, P. Billot, J. Thomazet, Microstructure of oxide films formed during the waterside corrosion of the zircaloy-4 cladding in lithiated environment. Zirconium in the Nuclear Industry: 16th International Symposium ASTM STP 1295. 1295, 94–113 (1996). Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-0030289887&partnerID=tZOtx3y1

  16. N. Ni, S. Lozano-Perez, M.L. Jenkins et al., Porosity in oxides on zirconium fuel cladding alloys, and its importance in controlling oxidation rates. Scr Mater. 62(8), 564–567 (2010). doi:https://doi.org/10.1016/j.scriptamat.2009.12.043

    Article  CAS  Google Scholar 

  17. N. Ni, D. Hudson, J. Wei et al., How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys. Acta Mater. 60(20), 7132–7149 (2012). doi:https://doi.org/10.1016/j.actamat.2012.09.021

    Article  CAS  Google Scholar 

  18. P. Tejland, H.-O. Andrén, Origin and effect of lateral cracks in oxide scales formed on zirconium alloys. J. Nucl. Mater. 430(1–3), 64–71 (2012). doi:https://doi.org/10.1016/j.jnucmat.2012.06.039

    Article  CAS  Google Scholar 

  19. N. Ni, S. Lozano-Perez, J. Sykes, C.R.M. Grovenor, Quantitative EELS analysis of zirconium alloy metal/oxide interfaces. Ultramicroscopy 111(2), 123–30 (2011). doi:https://doi.org/10.1016/j.ultramic.2010.10.020

    Article  CAS  Google Scholar 

  20. K.J. Annand, I. MacLaren, M. Gass, Utilising DualEELS to probe the nanoscale mechanisms of the corrosion of Zircaloy-4 in 350 °C pressurised water. J. Nucl. Mater. 465, 390–399 (2015). doi:https://doi.org/10.1016/j.jnucmat.2015.06.022

    Article  CAS  Google Scholar 

  21. S.S. Yardley, K.L. Moore, N. Ni et al., An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS. J. Nucl. Mater. 443(1–3), 436–443 (2013). doi:https://doi.org/10.1016/j.jnucmat.2013.07.053

    Article  CAS  Google Scholar 

  22. Chris R.M. Grovenor, N. Ni, D. Hudson et al., Mechanisms of oxidation of fuel cladding alloys revealed by high resolution APT, TEM and SIMS analysis. Mater. Res. Soc. Symp. Proc. 1383, 101–112 (2012)

    Article  CAS  Google Scholar 

  23. D.H. Bradhurst, P.M. Heuer, The temperature dependence of the in-reactor oxidation of zirconium alloys in moist CO2 atmospheres from 573–868 k. J. Nucl. Mater. 96(1), 196–204 (1981). doi:http://dx.doi.org/10.1016/0022-3115(81)90233-6

    Article  CAS  Google Scholar 

  24. E. Gulbransen, K. Andrew, Solubility and decomposition pressures of hydrogen in alpha-zirconium. JOM 7, 136–144 (1955)

    Article  CAS  Google Scholar 

  25. S. Yamanaka, T. Nishizaki, M. Uno, M. Katsura, Hydrogen dissolution into zirconium oxide. J. Alloys Compd. 293–295, 38–41 (1999)

    Article  Google Scholar 

  26. S. Yamanaka, Y. Fujita, M. Uno, M. Katsura, Influence of interstitial oxygen on hydrogen solubility in metals. J. Alloys Compd. 293–295, 42–51 (1999)

    Article  Google Scholar 

  27. M. Miyake, M. Uno, S. Yamanaka, On the zirconium–oxygen–hydrogen ternary system. J. Nucl. Mater. 270(1–2), 233–241 (1999). doi:https://doi.org/10.1016/S0022-3115(98)00779-X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Lozano-Perez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Sayers, J., Ortner, S., Li, K., Lozano-Perez, S. (2019). Effect of pH on Hydrogen Pick-Up and Corrosion in Zircaloy-4. In: Jackson, J., Paraventi, D., Wright, M. (eds) Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-04639-2_74

Download citation

Publish with us

Policies and ethics