Skip to main content

Abstract

Because atom probe tomography (APT) provides three-dimensional reconstructions of small volumes by resolving atomic chemical identities and positions, it is uniquely suited to analyze solute clustering phenomena in materials. A number of approaches have been developed to extract clustering information from the 3D reconstructed dataset, and numerous reports can be found applying these methods to a wide variety of materials questions. However, results from clustering analyses can differ significantly from one report to another, even when performed on similar microstructures, raising questions about the reliability of APT to quantitatively describe solute clustering. In addition, analysis details are often not provided, preventing independent confirmation of the results. With the number of APT research groups growing quickly, the APT community recognizes the need for educating new users about common methods and artefacts, and for developing analysis and data reporting protocols that address issues of reproducibility, errors, and variability. To this end, a round robin experiment was organized among ten different international institutions. The goal is to provide a consistent framework for the analysis of irradiated stainless steels using APT. Through the development of more reliable and reproducible data analysis and through communication, this project also aims to advance the understanding between irradiated microstructure and materials performance by providing more complete quantitative microstructural input for modeling. The results, methods, and findings of this round robin will also apply to other clustering phenomena studied using APT, beyond the theme of radiation damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Hyde, M. Burke, B. Gault, D.W. Saxey, P. Styman, K. Wilford, T. Williams, Ultramicroscopy 111, 676–682 (2011)

    Article  CAS  Google Scholar 

  2. A. Etienne, B. Radiguet, P. Pareige, J.P. Massoud, C. Pokor, J. Nucl. Mater. 382, 64–69 (2008)

    Article  CAS  Google Scholar 

  3. T. Toyama, Y. Nozawa, W. Van Renterghem, Y. Matsukawa, M. Hatakeyama, Y. Nagai, A. Al Mazouzi, S. Van Dyck, J. Nucl. Mater. 418, 62–68 (2011)

    Article  CAS  Google Scholar 

  4. Y. Chen, P.H. Chou, E.A. Marquis, J. Nucl. Mater. 451, 130–136 (2014)

    Article  CAS  Google Scholar 

  5. D.J. Larson, P.J. Maziasz, I.S. Kim, K. Miyahara, Scripta. Mater. 44, 359–364 (2001)

    Article  CAS  Google Scholar 

  6. M.K. Miller, E.A. Kenik, Microsc. Microanal. 10, 336–341 (2004)

    Article  CAS  Google Scholar 

  7. B. Gault, M.P. Moody, J.M. Cairney, S.P. Ringer, Atom Probe Microscopy, Springer, 2012

    Google Scholar 

  8. B. Gault, F. Danoix, K. Hoummada, D. Mangelinck, H. Leitner, Ultramicroscopy 113, 182–191 (2012)

    Article  CAS  Google Scholar 

  9. A.R. Waugh, E.D. Boyes, M.J. Southon, Surf. Sci. 69, 109–142 (1876)

    Google Scholar 

  10. D.J. Rose, J. Applied Phys. 27, 215–220 (1956)

    Article  CAS  Google Scholar 

  11. F. Vurpillot, A. Bostel, E. Cadel, D. Blavette, Ultramicroscopy 84, 213–224 (2000)

    Article  CAS  Google Scholar 

  12. M.K. Miller, M.G. Hetherington, Surf. Sci. 246, 442–449 (1991)

    Article  CAS  Google Scholar 

  13. F. Vurpillot, A. Bostel, D. Blavette, Appl. Phys. Lett. 76, 3127–3129 (2000)

    Article  CAS  Google Scholar 

  14. D.W. Saxey, Ultramicroscopy 111, 473–479 (2011)

    Article  CAS  Google Scholar 

  15. A. Heinrich, T.a. Al-Kassab, R. Kirchheim, Mater. Sci. Eng. A 35, 92–98 (2003)

    Google Scholar 

  16. D. Vaumousse, A. Cerezo, P.J. Warren, Ultramicroscopy 95, 215–221 (2003)

    Article  CAS  Google Scholar 

  17. A. Cerezo, L. Davin, Surf. Interf. Anal. 39, 184–188 (2007)

    Article  CAS  Google Scholar 

  18. L.T. Stephenson, M.P. Moody, P.V. Liddicoat, S.P. Ringer, Microsc. Microanal. 13, 448–463 (2007)

    Article  CAS  Google Scholar 

  19. D. Blavette, S. Chambreland, Journal de Physique Colloques 47, C7–503 (1986)

    Google Scholar 

  20. B. Radiguet, A. Barbu, P. Pareige, J. Nucl. Mater. 360, 104–117 (2007)

    Article  CAS  Google Scholar 

  21. J.M. Hyde, A. Cerezo, T.J. Williams, Ultramicroscopy 109, 502–509 (2009)

    Article  CAS  Google Scholar 

  22. E. Meslin, B. Radiguet, M. Loyer-Prost, Acta Mater. 61, 6246–6254 (2013)

    Article  CAS  Google Scholar 

  23. F. Vurpillot, F. De Geuser, G. Da Costa, D. Blavette, J. Microscopy-Oxford 216, 234–240 (2004)

    Article  CAS  Google Scholar 

  24. F. De Geuser, W. Lefebvre, D. Blavette, Phil. Mag. Lett. 86, 227–234 (2006)

    Article  CAS  Google Scholar 

  25. L. Couturier, F. De Geuser, A. Deschamps, Mater. Charact. 121, 61–67 (2016)

    Article  CAS  Google Scholar 

  26. W. Lefebvre, T. Philippe, F. Vurpillot, Ultramicroscopy 111, 200–206 (2011)

    Article  CAS  Google Scholar 

  27. O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, D.N. Seidman, Microsc. Microanal. 6, 437–444 (2000)

    CAS  Google Scholar 

  28. M.P. Moody, L.T. Stephenson, A.V. Ceguerra, S.P. Ringer, Microsc. Res. Tech. 71, 542–550 (2008)

    Article  Google Scholar 

  29. J.M. Hyde, E.A. Marquis, K.B. Wilford, T.J. Williams, Ultramicroscopy 111, 440–447 (2011)

    Article  CAS  Google Scholar 

  30. P.D. Styman, J.M. Hyde, K. Wilford, G.D.W. Smith, Ultramicroscopy 132, 258–264 (2013)

    Article  CAS  Google Scholar 

  31. C.A. Williams, D. Haley, E.A. Marquis, G.D. Smith, M.P. Moody, Ultramicroscopy 132, 271–278 (2013)

    Article  CAS  Google Scholar 

  32. R.K. Marceau, L.T. Stephenson, C.R. Hutchinson, S.P. Ringer, Ultramicroscopy 111, 738–742 (2011)

    Article  CAS  Google Scholar 

  33. E.A. Jaegle, P.P. Choi, D. Raabe, Microsc. Microanal. 20, 1662–1671 (2014)

    Article  CAS  Google Scholar 

  34. R.P. Kolli, D.N. Seidman, Microsc. Microanal. 13, 272–284 (2007)

    Article  CAS  Google Scholar 

  35. D.J. Larson, T. Prosa, R. Ulfig, B. Geiser, T.F. Kelly, Local Electrode Atom Probe Tomography (Springer, 2014)

    Google Scholar 

  36. W. Lefebvre-Ulrikson, F. Vurpillot, X. Sauvage, Atom Probe Tomography Put Theory into Practice (Elsevier, 2016)

    Google Scholar 

  37. D. Haley, 3Depict—Visualisation & Analysis for Atom Probe, 2010

    Google Scholar 

  38. T. Philippe, F. De Geuser, S. Duguay, W. Lefebvre, O. Cojocaru-Miredin, G. Da Costa, D. Blavette, Ultramicroscopy 109 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the voluntary participation by the members of the APT Round Robin and financial support of EPRI and EDF for the analysis of the aggregate results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle A. Marquis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Marquis, E.A. et al. (2019). On the Use of Density-Based Algorithms for the Analysis of Solute Clustering in Atom Probe Tomography Data. In: Jackson, J., Paraventi, D., Wright, M. (eds) Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-04639-2_141

Download citation

Publish with us

Policies and ethics