Skip to main content

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Hydride precipitation in zirconium cladding is known to cause severe loss of toughness and greatly increase the risk of mechanical failure and fuel leakage. Modeling hydride formation kinetics is critical to the safety assessment of the fuel-cladding system and the entire reactor system. Existing reduced order models do not provide such details as number density and size distribution of hydride precipitates. We have recently developed a cross-scale cluster dynamics model with increased physical details and enhanced predictive capability for the hydride formation kinetics in zirconium. Our model takes information from atomistic simulations, such as migration energy of interstitial hydrogen and formation/binding energy of hydride embryos/clusters, as input, and establishes and solves a system of rate equations that describe the evolution of concentrations of freely migrating hydrogen as well as sessile hydride clusters of all different sizes. Used here to simulate an in situ hydride growth experiment on a TEM, our model is able to reproduce the linear growth behavior of pre-existing hydrides under hydrogen ion implantation and provide possible explanations for the estimated growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.P. Marino, Nucl. Sci. Eng. 49, 93 (1972)

    Article  CAS  Google Scholar 

  2. C.F. Bilsby, J. Nucl. Mater. 68, 1 (1977)

    Article  CAS  Google Scholar 

  3. B.F. Kammenzind, D.G. Franklin, H.R. Peters, W.J. Duffin, in The Nuclear Industry: 11th International Symposium, ed. by E.R. Bradley, G.P. Sabol, ASTM STP 1295, (American Society for Testing and Materials, 1996), p. 338

    Google Scholar 

  4. M.S. Veshchunov, V.E. Shestak, V.D. Ozrin, J. Nucl. Mater. 472, 65 (2016)

    Article  CAS  Google Scholar 

  5. A. Aryanfar, J. Thomas, A. Van Der Ven, D.H. Xu, M. Youssef, J. Yang, B. Yildiz, J. Marian, JOM 68, 2900 (2016)

    Article  CAS  Google Scholar 

  6. D.H. Xu, A. Certain, H.J.L. Voigt, T. Allen, B.D. Wirth, J. Chem. Phys. 145, 104704 (2016)

    Article  CAS  Google Scholar 

  7. D.H. Xu, G. VanCoevering, B.D. Wirth, Comput. Mater. Sci. 114, 47 (2016)

    Article  CAS  Google Scholar 

  8. D.H. Xu, B.D. Wirth, M.M. Li, M.A. Kirk, Appl. Phys. Lett. 101, 101905 (2012)

    Article  CAS  Google Scholar 

  9. D.H. Xu, B.D. Wirth, M.M. Li, M.A. Kirk, Acta Mater. 60, 4286 (2012)

    Article  CAS  Google Scholar 

  10. D.H. Xu, B.D. Wirth, J. Nucl. Mater. 403, 184 (2010)

    Article  CAS  Google Scholar 

  11. Y. Shinohara, H. Abe, T. Iwai, N. Sekimura, T. Kido, H. Yamamoto, T. Taguchi, J. Nucl. Sci. Tech. 46, 564 (2009)

    Article  CAS  Google Scholar 

  12. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York, 1984)

    Google Scholar 

  13. M. Christensen, W. Wolf, C. Freeman et al., J. Phys.: Condens. Matter 27, 025402 (2015)

    CAS  Google Scholar 

  14. D. R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements (ERDA, 1976)

    Google Scholar 

  15. A. Rafiei, M. Bollhofer, Numer. Math. 118, 247 (2011)

    Article  Google Scholar 

  16. G. Karypis, V. Kumar, SIAM J. Sci. Comput. 20, 359 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

D. Xu acknowledges support from the DoE CASL (Consortium for Advanced Simulation of Light water reactors) program under the subcontracts UT-B 4000139375 and UT-B 4000154162 and new faculty startup fund from Oregon State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghua Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Xu, D., Xiao, H. (2019). Cluster Dynamics Model for the Hydride Precipitation Kinetics in Zirconium Cladding. In: Jackson, J., Paraventi, D., Wright, M. (eds) Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-04639-2_118

Download citation

Publish with us

Policies and ethics