Skip to main content

Abstract

Alloy 82 weld metal shows higher Stress Corrosion Cracking (SCC) resistance in BWR environments than Alloys 182 and 132. To define the relative factor of improvement in SCC resistance and its impact on plant management properly, it is appropriate to establish a SCC growth rate disposition curve for Alloy 82 in BWR environments. In this study, several factors that influence SCC growth behavior of Alloy 82 are evaluated based on the latest Crack Growth Rate (CGR) data collected in Japan BWR Owners Group projects. The goal is to provide a technical basis on which the validity of the data will be evaluated prior to proposing a new disposition curve. The factors evaluated include effects of type of Alloy 82 weld, specimen size, post weld heat treatment (PWHT) and sulfate addition on SCC growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Efsing et al., IGSCC disposition curve for Alloy 82 in BWR normal water chemistry, in 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems (2007)

    Google Scholar 

  2. Materials Reliability Program, Crack Growth Rates for Evaluating Primary Water Stress Corrosion Cracking (PWSCC) of Alloy 82, 182, and 132 Welds (MRP-115), EPRI, Palo Alto, CA: 2004, 1006696

    Google Scholar 

  3. K. Kumagai et al., Effects of K and Impurity Concentration on Crack Growth Kinetics At Alloy 182/A533B Weld Overlay Boundaries in BWRs, in 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems (2009)

    Google Scholar 

  4. E. Richey, D. Morton, W. Moshier, Influence of specimen size on the SCC growth rate of Ni-alloys exposed to high temperature water, in Proceedings of Corrosion 2006, Paper 06513, NACE (2006)

    Google Scholar 

  5. S. Hong et al., Measurements of stress corrosion cracking growth rates in Weld Alloy 182 in primary water of PWR, in 10th International Conference on Environmental Degradation of Materials in Nuclear Power Systems (2002)

    Google Scholar 

  6. C. Amzallag et al., Stress corrosion life assessment of 182 and 82 welds used in PWR components, in 10th International Conference on Environmental Degradation of Materials in Nuclear Power Systems (2002)

    Google Scholar 

  7. P. Andresen, SCC of Alloy 182 and 82 weld metals in BWR water, in Proceedings of Corrosion 2010, Paper 10284, NACE (2010)

    Google Scholar 

Download references

Acknowledgements

GTAW data were collected in a co-operative research program between Japan BWR Owners Group (The Chugoku Electric Power Co., Tohoku Electric Power Co., Tokyo Electric Power Company Holdings, Chubu Electric Power Co., Hokuriku Electric Power Company, The Japan Atomic Power Company, Electric Power Development Co., Toshiba Corporation and Hitachi-GE Nuclear Energy. Some of the MIG/SAW tests were performed at the GE Global Research Center. Those valuable data and many discussions are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Kumagai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Kumagai, K., Sakai, Y., Kaminaga, T. (2019). Technical Basis and SCC Growth Rate Data to Develop an SCC Disposition Curve for Alloy 82 in BWR Environments. In: Jackson, J., Paraventi, D., Wright, M. (eds) Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-04639-2_106

Download citation

Publish with us

Policies and ethics