Skip to main content

Nox2 and Nox4 Participate in ROS-Induced Neuronal Apoptosis and Brain Injury During Ischemia-Reperfusion in Rats

  • Chapter
  • First Online:
Subarachnoid Hemorrhage

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 127))

Abstract

Background: Previously studies have shown that Nox2 and Nox4, as members of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase, Nox), participate in brain damage caused by ischemia-reperfusion (I/R). The aim of this study is to investigate the effects of specific chemical inhibitors of Nox2 and Nox4 on cerebral I/R-induced brain injury in rats.

Methods: At 0.5 h before MCAO surgery, the rats were pretreated with vehicle, Nox2 inhibitor (gp91ds-tat), and Nox4 inhibitor (GKT137831), respectively. After reperfusion for 24 h, the infarct sizes of brain tissues in rats in various groups are determined. The penumbra (ischemic) tissues are collected to measure ROS levels, neuronal apoptosis, and degeneration, as well as the integrity of the blood-brain barrier (BBB) in brain tissues of rats.

Results: gp91ds-tat and GKT137831 pretreatment significantly reduced the infarct sizes in brain tissues of rats, effectively suppressed I/R-induced increase in ROS levels, neuronal apoptosis and degeneration, and obviously alleviated BBB damage.

Conclusion: Under cerebral I/R conditions, Nox2 inhibitor (gp91ds-tat) and Nox4 inhibitor (GKT137831) can effectively play a protective role in the brain tissues of rats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreadou I, Iliodromitis EK, Farmakis D, Kremastinos DT. To prevent, protect and save the ischemic heart: antioxidants revisited. Expert Opin Ther Targets. 2009;13:945–56. https://doi.org/10.1517/14728220903039698.

    Article  CAS  PubMed  Google Scholar 

  2. Ashwal S, Tone B, Tian HR, Cole DJ, Liwnicz BH, Pearce WJ. Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion in the rat pup. Pediatr Res. 1999;46:390–400. https://doi.org/10.1203/00006450-199910000-00006.

    Article  CAS  PubMed  Google Scholar 

  3. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke. 1981;12:723–5.

    Article  CAS  Google Scholar 

  4. Cao G, Ye X, Xu Y, Yin M, Chen H, Kou J, Yu B. YiQiFuMai powder injection ameliorates blood-brain barrier dysfunction and brain edema after focal cerebral ischemia-reperfusion injury in mice. Drug Des Devel Ther. 2016;10:315–25. https://doi.org/10.2147/DDDT.S96818.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen H, Kim GS, Okami N, Narasimhan P, Chan PH. NADPH oxidase is involved in post-ischemic brain inflammation. Neurobiol Dis. 2011;42:341–8. https://doi.org/10.1016/j.nbd.2011.01.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen YH, Du GH, Zhang JT. Salvianolic acid B protects brain against injuries caused by ischemia-reperfusion in rats. Acta Pharmacol Sin. 2000;21:463–6.

    CAS  PubMed  Google Scholar 

  7. De Silva TM, Brait VH, Drummond GR, Sobey CG, Miller AA. Nox2 oxidase activity accounts for the oxidative stress and vasomotor dysfunction in mouse cerebral arteries following ischemic stroke. PLoS One. 2011;6:e28393. https://doi.org/10.1371/journal.pone.0028393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Djordjevic VB, Zvezdanovic L, Cosic V. [Oxidative stress in human diseases]. Srp Arh Celok Lek. 2008;136(Suppl 2):158–65.

    Article  Google Scholar 

  9. Green DE, Murphy TC, Kang BY, Kleinhenz JM, Szyndralewiez C, Page P, Sutliff RL, Hart CM. The Nox4 inhibitor GKT137831 attenuates hypoxia-induced pulmonary vascular cell proliferation. Am J Respir Cell Mol Biol. 2012;47:718–26. https://doi.org/10.1165/rcmb.2011-0418OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Green SP, Cairns B, Rae J, Errett-Baroncini C, Hongo JA, Erickson RW, Curnutte JT. Induction of gp91-phox, a component of the phagocyte NADPH oxidase, in microglial cells during central nervous system inflammation. J Cereb Blood Flow Metab. 2001;21:374–84. https://doi.org/10.1097/00004647-200104000-00006.

    Article  CAS  PubMed  Google Scholar 

  11. Hafez S, Hoda MN, Guo X, Johnson MH, Fagan SC, Ergul A. Comparative analysis of different methods of ischemia/reperfusion in hyperglycemic stroke outcomes: interaction with tPA. Transl Stroke Res. 2015;6:171–80. https://doi.org/10.1007/s12975-015-0391-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huttemann M, Lee I, Grossman LI, Doan JW, Sanderson TH. Phosphorylation of mammalian cytochrome c and cytochrome c oxidase in the regulation of cell destiny: respiration, apoptosis, and human disease. Adv Exp Med Biol. 2012;748:237–64. https://doi.org/10.1007/978-1-4614-3573-0_10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kahles T, Brandes RP. NADPH oxidases as therapeutic targets in ischemic stroke. Cell Mol Life Sci. 2012;69:2345–63. https://doi.org/10.1007/s00018-012-1011-8.

    Article  CAS  PubMed  Google Scholar 

  14. Kahles T, Brandes RP. Which NADPH oxidase isoform is relevant for ischemic stroke? The case for nox 2. Antioxid Redox Signal. 2013;18:1400–17. https://doi.org/10.1089/ars.2012.4721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kahles T, et al. NADPH oxidase Nox1 contributes to ischemic injury in experimental stroke in mice. Neurobiol Dis. 2010;40:185–92. https://doi.org/10.1016/j.nbd.2010.05.023.

    Article  CAS  PubMed  Google Scholar 

  16. Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol. 2014;2:702–14. https://doi.org/10.1016/j.redox.2014.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kleikers PW, et al. NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury. J Mol Med. 2012;90:1391–406. https://doi.org/10.1007/s00109-012-0963-3.

    Article  CAS  PubMed  Google Scholar 

  18. Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M, Barit D, Schwarz T, Geis C, Kraft P, Barthel K, Schuhmann MK, Herrmann AM, Meuth SG, Stoll G, Meurer S, Schrewe A, Becker L, Gailus-Durner V, Fuchs H, Klopstock T, de Angelis MH, Jandeleit-Dahm K, Shah AM, Weissmann N, Schmidt HH. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol. 2010;8(9). https://doi.org/10.1371/journal.pbio.1000479.

    Article  Google Scholar 

  19. Kochanski R, Peng C, Higashida T, Geng X, Huttemann M, Guthikonda M, Ding Y. Neuroprotection conferred by post-ischemia ethanol therapy in experimental stroke: an inhibitory effect on hyperglycolysis and NADPH oxidase activation. J Neurochem. 2013;126:113–21. https://doi.org/10.1111/jnc.12169.

    Article  CAS  PubMed  Google Scholar 

  20. Kusaka I, Kusaka G, Zhou C, Ishikawa M, Nanda A, Granger DN, Zhang JH, Tang J. Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury. Am J Physiol Heart Circ Physiol. 2004;286(6):H2442–51. https://doi.org/10.1152/ajpheart.01169.2003.

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Gao A, Feng D, Wang Y, Zhang L, Cui Y, Li B, Wang Z, Chen G. Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood-brain barrier integrity during experimental cerebral ischemia-reperfusion injury. Transl Stroke Res. 2014;5(5):618–26. https://doi.org/10.1007/s12975-014-0354-x.

    Article  PubMed  Google Scholar 

  22. Li H, Wang Y, Feng D, Liu Y, Xu M, Gao A, Tian F, Zhang L, Cui Y, Wang Z, Chen G. Alterations in the time course of expression of the Nox family in the brain in a rat experimental cerebral ischemia and reperfusion model: effects of melatonin. J Pineal Res. 2014;57(1):110–9. https://doi.org/10.1111/jpi.12148.

    Article  CAS  PubMed  Google Scholar 

  23. Liu W, Chen Q, Liu J, Liu KJ. Normobaric hyperoxia protects the blood brain barrier through inhibiting Nox2 containing NADPH oxidase in ischemic stroke. Med Gas Res. 2011;1:22. https://doi.org/10.1186/2045-9912-1-22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu X, et al. Remote ischemic postconditioning alleviates cerebral ischemic injury by attenuating endoplasmic reticulum stress-mediated apoptosis. Transl Stroke Res. 2014;5:692–700. https://doi.org/10.1007/s12975-014-0359-5.

    Article  CAS  PubMed  Google Scholar 

  25. Molina CA. Reperfusion therapies for acute ischemic stroke: current pharmacological and mechanical approaches. Stroke. 2011;42:S16–9. https://doi.org/10.1161/STROKEAHA.110.598763.

    Article  PubMed  Google Scholar 

  26. Pang T, Wang J, Benicky J, Sanchez-Lemus E, Saavedra JM. Telmisartan directly ameliorates the neuronal inflammatory response to IL-1beta partly through the JNK/c-Jun and NADPH oxidase pathways. J Neuroinflammation. 2012;9:102. https://doi.org/10.1186/1742-2094-9-102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qi Z, et al. Bcl-2 phosphorylation triggers autophagy switch and reduces mitochondrial damage in limb remote ischemic conditioned rats after ischemic stroke. Transl Stroke Res. 2015;6:198–206. https://doi.org/10.1007/s12975-015-0393-y.

    Article  CAS  PubMed  Google Scholar 

  28. Radermacher KA, Wingler K, Kleikers P, Altenhofer S, JR Hermans J, Kleinschnitz C, Hhw Schmidt H. The 1027th target candidate in stroke: will NADPH oxidase hold up? Exp Transl Stroke Med. 2012;4:11. https://doi.org/10.1186/2040-7378-4-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen J, et al. Interrupted reperfusion reduces the activation of NADPH oxidase after cerebral I/R injury. Free Radic Biol Med. 2011;50:1780–6. https://doi.org/10.1016/j.freeradbiomed.2011.03.028.

    Article  CAS  PubMed  Google Scholar 

  30. Taylor TN, Davis PH, Torner JC, Holmes J, Meyer JW, Jacobson MF. Lifetime cost of stroke in the United States. Stroke. 1996;27:1459–66.

    Article  CAS  Google Scholar 

  31. Yoshioka H, Niizuma K, Katsu M, Okami N, Sakata H, Kim GS, Narasimhan P, Chan PH. NADPH oxidase mediates striatal neuronal injury after transient global cerebral ischemia. J Cereb Blood Flow Metab. 2011;31(3):868–80. https://doi.org/10.1038/jcbfm.2010.166.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang L, Li Z, Feng D, Shen H, Tian X, Li H, Wang Z, Chen G. Involvement of Nox2 and Nox4 NADPH oxidases in early brain injury after subarachnoid hemorrhage. Free Radic Res. 2017;51(3):316–28. https://doi.org/10.1080/10715762.2017.1311015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

None.

Conflict of Interest: The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J., Liu, Y., Shen, H., Li, H., Wang, Z., Chen, G. (2020). Nox2 and Nox4 Participate in ROS-Induced Neuronal Apoptosis and Brain Injury During Ischemia-Reperfusion in Rats. In: Martin, R., Boling, W., Chen, G., Zhang, J. (eds) Subarachnoid Hemorrhage. Acta Neurochirurgica Supplement, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-04615-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04615-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04614-9

  • Online ISBN: 978-3-030-04615-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics